Клеточному уровню организации жизни соответствуют примеры. Уровни организации жизни, их характеристика

1. Клетка как элементарная генетическая и структурно-функциональный биологическая единица. Типы клеточной организации.

Клетка - элементарная биологическая система, способная к самообновлению, самовоспроизведению и саморазвитию. В основе строения ВСЕХ организмов лежат сходные структуры - клетки. Вне клетки не существует настоящей жизнедеятельности (вирусы). Среди современных организмов можно проследить формирование клетки в процессе эволюции органического мира от прокариот (микоплазмы и дробянки) до высших растений и животных.

Клеточная теория. История. Современное состояние. Значение - самостоятельно

Типы клеточной организации:

Прокариотический. Клеточные организмы, которые появились первыми. Это одноклеточные относительно простого строения и простых функций. Эти организмы господствовали на нашей планете более 2 миллиардов лет. С их эволюцией связано появление: 1) механизмов фотосинтеза. 2) организмов эукариотического типа. Генетический аппарат прокариот: единственная кольцевая ДНК, находится в цитоплазме не отграничена оболочкой - нуклеоид. Снаружи клеточная стенка, наружная часть образована гликопептидом - муреином. Внутренняя часть клеточной стенки представлена плазматической мембраной, выпячивания которой в цитоплазму образуют мезосомы, которые выполняют различные функции. Многочисленные мелкие рибосомы, микротрубочек нет, движения цитоплазмы - нет, хлоропласты и других мембранных органелл - нет.

Эукариотический. Появились около 1,5 миллиардов лет назад. Отличаются от прокариотов более сложной организацией и используют больший объем наследственной информации. Общая длина молекулы ДНК в ядре клетки млекопитающего в 1000 раз превосходит длину молекулы ДНК бактерии.

Сравнительная характеристика эу- и прокариот - самостоятельно

Эукариотический тип клеточной организации представлен 2 типами: одноклеточными и многоклеточными организмами. Особенность организмов простейших в структурном отношении соответствуют уровню одной клетки, в физиологическом - полноценной особи. За счет миниатюрных образований органелл выполняются на клеточном уровне функции жизненно важных органов многоклеточных. Клетки многоклеточных организмов, входя в состав тканей и органов утратили свою самостоятельность. Их форма, размеры и строение определяются выполняемыми функциями. Ex. В организме человека более 200 типов клеток, специализированных по функциям, но генотип один и тот же.

Принцип компартментации (клетка поделена на отсеки). Высокая упорядоченность внутреннего содержимого эукариотической клетки достигается путем компартментации ее объема, те подразделением на «ячейки», которые отличаются деталями химического (ферментного) состава. Компартментация способствует пространственному разделению веществ и процессов в клетки, направленных часто противоположно.

2. Структурно-функциональная организация клетки. Строение и функции биологической мембраны

Состав эукариотической клетки:

1. Поверхностный аппарат (комплекс, клеточная оболочка)

2. ядро - это не органоид

3. цитоплазма

Каждый из компонентов содержит свой комплекс.

Строение и функции биологических мембран:

Основная часть поверхностного аппарата клетки - плазматическая или биологическая мембрана (цитоплазматическая мембрана). Клеточная мембрана - важнейший компонент живого содержимого клетки, построенный по общему принципу. Предложено несколько моделей строения. Согласно жидкостно-мозаичной модели, предложенной в 1972 г. Николсоном и Сингером, в состав мембран входит бимолекулярный слой фосфолипидов, в который включены молекулы белков. Липиды - водонерастворимые вещества. Молекулы которых имеют два полюса: гидрофильный, гидрофобный. В биологической мембране молекулы липидов двух параллельных слоев обращены друг к другу гидофобными концами. А гидрофильные полюса остаются снаружи, которые образуют гидрофильные поверхности. На поверхности мембраны кнаружи и кнутри расположены НЕСПЛОШНЫМ слоем белки, их 3 группы: периферические, погруженные (полуинтегральные), пронизывающие (интегральные). Большинство белков мембраны - ферменты. Погруженные белки образуют на мембране биохимический конвейер, на котором происходит превращение веществ. Положение погруженных белков стабилизируется периферическими белками. Пронизывающие белки обеспечивают передачу вещ-ва в двух направлениях: через мембрану внутрь клетки и обратно. Бывают двух типов: переносчики и каналообразующие. Каналообразующие выстилают пору, заполненную водой, через которую проходят растворенные неорганические вещества с одной стороны мембраны на другую. На внешней поверхности плазматической мембраны в животной клетке белковые и липидные молекулы, связаны с разветвленными углеводными цепями, образуя гликокаликс, надмебранный, неживой слой, продукт жизнедеятельности клетки. Углеводные цепи выполняют роль рецепторов (межклеточное узнавание- свой-чужой) . Клетка приобретает способность специфически реагировать на воздействие извне. В надмебранный слой у бактерий входим муреин, у растений - целлюлоза или пектин. Под плазматической мембраной со стороны цитоплазмы имеются кортикальный (поверхностный) слой и внутриклеточные фибриллярные структуры, обеспечивают механическую устойчивость мембраны.

Свойства мембраны или плазмалеммы:

Способность к самозамыканию

Пластичность

Избирательная проницаемость

Функции плазмалеммы

Барьерная

Опорная

Рецепторная

Регуляторная

Стабилизирующая

Транспортная

Цитоплазматическая мембрана образует различные типы контактов в зависимости от типа тканей. Ex у нервных клеток - синапсы, сердечная мышца - десмосомы.

Поступление веществ через мембрану. Механизма транспорта веществ зависит от размеров частиц. Малые молекулы и ионы проходят путем пассивного и активного транспорта, макромолекулы и крупные частицы за счет эндо- и экзоцитоза, те образования окруженные мембраной пузырьков. Пассивный транспорт происходит без затрат энергии по градиенту концентрации путем диффузии, осмоса, облегченной диффузии. Активный транспорт идет с затратой энергии АТФ против градиента концентрации при участии белков переносчиков. Ex. Калиевый-натриевый насос. При нарушении избирательной проницаемости мембран организм страдает, особенно при применении специфических лекарственных лекарственных препаратов (при похудении, например), с мембранами связаны многие процессы жизнедеятельности клетки функционирования органоидов. В основе патологических процессов лежит нарушение молекулярной организации мембран.

Структурные элементы цитоплазмы:

Гиалоплазма (матрикс). Основное вещество, заполняет пространство между органоидами.

Включения. Непостоянные компоненты, продукты жизнедеятельности клеток. Неживые, не выполнея активных функций, синтезируется в клетке и синтезируется в процессе обмена.

Органоиды или органеллы. ПОСТОЯННЫЕ компоненты клетки, располагаются в гиалоплазме. Имеют определенное строение и выполняют определенные функции. Подразделяются по назначению на общие, имеются во всех или в большинстве клеток. Это митохондрии, пластиды, и специальные, присущие небольшим группам клеток. Реснички, нейрофибриллы. По строению: 1. немембранные, рибосомы, микротрубочки; 2. мембранные: одномембранные, ЭПС, комплекс Гольджи, лизосомы и др. вакуоли; двумембранные: митохондрии и пластиды - полуавтономные структуры, т. к. содержат ДНК

Ядро. Необходимо для жизни клетки, обладает большими компенсаторными возможностями. Ex. Структура цитоплазмы разрушено, но ядро цело, то структура восстанавливается, а если разрушено ядро, клетка погибает.

Функции ядра:

Хранения генетической информации.

Реализация генетической информации

Центр управления обменом веществ.

Регуляция активности клетки

В зависимости от фазы жизненного цикла различают два состояния ядра: 1. интерфазное, имеет ядерную оболочку или кариолемму, кариоплазму, ядерный сок, ядрышки (нуклеосомма), хроматин. 2) ядро при делении клетки. Присутствует только хроматин в разном состоянии. Хроматин - это плотное вещество ядра, хорошо окрашиваемое основными красителями. Химический состав: примерно 50% ДНК, 40% гистоновые белки или основные, 10% - негистоновые или кислые белки, РНК и ионы. Все вместе это дизоксирибонуклеиновый комплекс, субстрат наследственности. Гистоны представлены 5 фракциями, негистоновые белки - более 100 фракций. Те и другие соединяются с молекулой ДНК и препятствуют считыванию наследственной информации - это регуляторная роль. Эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах (см. таблицу спирализация хроматина)

Строение метафазной хромосомы. Строение хромосом изучают в метафазе или в начале анафазы. Метафазные пластинки хромосом изучаются для определения хромосомных аномалий плода, используют клетки слущенного кожного эпителия в околоплодных водах. Хромосома - это спирализованная нить, от степени скручивания нитчатых структур зависит длина хромосом. Уровни компактизации хроматина в методичке.

Строение хромосом - самостоятельно.

Совокупность признаков хромосомного набора, число размер и форма хромосом - кариотип. Идеограмма - это систематизированный кариотип. Хромосомы расположены по мере убывания их величины. Кариотип человека. В кариотипе выделяют соматические хромосомы или аутосомы и половые хромосомы X и Y.

44А+ХХ (№45,46) - соматическая клетка, гамета: 22А+Х

44А+ХY (№45-Х, №46Y) 22А+Х, 22А+Y

3. Временные организации клетки

Клеточный цикл - это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти. Апоптоз - запрограммированная гибель клетки. Содержание жизненного цкла клетки - это закономерные изменения структурно-функциональных характеристик во времени. В течении жизни клетки расткт, дифференцируются, выполняют определенные функции, размножаются и гибнуть. В период покоя судьба клетки не определена, она может начать подготовку к митозу, либо приступить к специализации. Чем выше специализация клетки, тем ниже способность к делению. ОП метатической активности выделяют три типа тканей: 1. стабильная, нет митозов, кол-во ДНК постоянно (специализированные клетки, нервные) 2. обновляющиеся ткани, клетки способны постоянно делиться, с большим числом митозов (эпителиальные ткани, кроветворные органы). 3. растущие ткани, часть клеток делится, а часть - активно функционирует (почки, печень).

Жизненный цикл клетки

Жизненный цикл клетки подразделяется на 1) митотический и 2) гетеросентетический (специаализация с потерей пролиферации, способности к делению или гибель клетки).

Некроз - гибель от посторонних случайных воздейсвий

Регуляциия клеточного цикла

Осуществляется окружающими клетками и гуморальными факторами. Существенную роль играют особые белки, образующиеся под действием генетической программы - циклоны, они индуцируют митоз и контролируют различную длительность периодов клеточного цикла.

Кейлоны - белки, способны ингибировать деление клеток и синтез ДНК, их действие ткани специфично.

Митотический цикл.

Интерфаза. Репродуктивная фаза, тк в синтетический период идет редупликация ДНК (удвоение). Подразделяется на 3 периода: G1 - пресентетический или постмитотический,S - синтетический, G2 - постсететический или премиотический. В интерфазе клетка активно работает, готовится к делению. К концу интерфазы активность снижается, наблюдается сдвиг ядерно-цитоплазматический отношений (ЯЦО), в сторону увеличения доли ядра.

Митоз. Разделительная фаза, длится 10% времени митотического цикла. Выделяют 4 периода (фазы).

Периодизация митотического цикла:

G1 – 2n2c, S – 2n4c, G2 – 2n4c

митоз: П: 2n4c; М: 2n4c; А: 2n2c – 4n4c; Т: 2n2c

Цитокенез в растительных клетках: Перегородка формируется изнутри клетки за счет продуктов, концентрируемых в комплексе Гольджи (пектин, целлюлоза). Цитокенез в животных клетках: перетяжка формируется снаружи за счет кортикального слоя цитоплазмы, где располагаются микротрубочки и филоменты.

Биологическое значение митоза:

Происходит точное распределение генетического материала между 2 дочерними клетками. Обе клетки получают ДИПЛОЙДНЫЙ набор хромосом. Поддерживается постоянство чилса хромосомах

Митотический цикл обеспечивает преемственность хромосом в ряду клеточных поколений

Является всеобщим механизмом воспроизведения клеточной организации эукариотического типа.

Нарушение той или иной фазы митоза приводя к патологическим изменениям клеток или возникновению различных соматических мутаций.

Эндомитоз, полиплоидия, политения, амитоз - самостоятельно!

Амитоз - прямое деление клетки, ядро находится в интерфазном состоянии. Хромосомы не выявляются. Приводит к появлению двух клеток, но очень часто в результатте возникают двуядерные и много ядерные клетки. В норме амитоз встречается в животных зародышевых оболочках и в фалликулярных клетках яичника, но никогда не встречается в эмбриональных тканях., только в специализированных. Характерен для патологических процессов (восполение, злокачественный рост).

Уровень организации живой материи это функциональное место биологической структуры определенной степени сложности в общей иерар­хии живого. Выделяют следующие уровни организации живой материи:

1.Молекулярный - организуется в сложные высокомолекулярные органические соединения, такие, как белки, нуклеиновые кис­лоты и др.

2.Субклеточный - организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные струк­туры.

3.Клеточный . На этом уровне живая материя представлена клетками. Клетка является элементарной структурной и функциональной единицей живого.

4.Органно-тканевой . На этом уровне живая материя организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организ­ма, выполняющая определенную функцию или функции.

5.Организменный На этом уровне живая материя представлена организмами. Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.

6.Популяционно-видовой . На этом уровне живая материя организуется в популяции. Популяция – совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида. Вид – совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).

7.Биоценотический . На этом уровне живая материя образует биоценозы. Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.

8.Биогеоценотический . На этом уровне живая материя формирует биогеоценозы. Биогеоценоз – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).

9.Биосферный . На этом уровне живая материя формирует биосферу. Биосфера – оболочка Земли, преобразованная деятельностью живых организмов.

Предсказать свойства каждого следующего уровня на основе свойств предыдущих уровней невозможно так же, как нельзя предсказать свойства воды, исходя из свойств кислорода и водорода. Такое явление носит название эмерджментность, то есть наличие у системы особых, качественно новых свойств, не присущих сумме свойств ее отдельных элементов. С другой стороны, знание особенностей отдельных составляющих системы значительно облегчает ее изучение.

16. Понятие о клетке как первооснове живой материи. Функции клетки.

Клетка - элементарная единица строения и жизнедеятельности всех живых организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (безядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше.

Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Основные функции клеток

Во всех клетках под контролем генетического аппарата осуществляется синтез белков. Клетка, не синтезирующая белки, по сути дела мертва. Клетка живет, - значит, её компоненты непрерывно меняются.

Чтобы все внутриклеточные процессы могли осуществляться, необходима энергия. В живых клетках постоянно идет энергетический обмен. Клетки обладают важнейшим для их жизни свойством - запасать и тратить энергию.

Клетка существует в постоянном контакте с окружающими клетками или с окружающими организм веществами. Жизнь клетки, по существу, заключается в поглощении веществ извне, преобразовании этих веществ в нужные для жизни клетки компоненты и передаче их в другие клетки, или запасании внутри данной клетки, или выведении из организма.

На всех стадиях развития клетки осуществляется регулирование ее жизнедеятельности. Сейчас биологам известно много способов регуляции жизнедеятельности клетки, включая генетическую регуляцию внутриклеточных процессов. Регуляция нужна и для обеспечения важнейшей функции живой клетки - свойства раздражимости, т. е. способности отвечать на воздействия, которым подвергается клетка извне.


Мир живой природы представляет собой совокупность биологических систем разного уровня организации и различной соподченённости. Они находятся в непрерывном взаимодействии. Выделяют несколько уровней живой материи:

Молекулярный – любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также важных органических веществ. С этого уровня начинается важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др. – наиболее древний уровень структуры живой природы, граничащий с неживой природой.

Клеточный – клетка – структурная и функциональная единица, также единица размножения и развития всех живых организмов, обитающих на Земле. Не клеточных форм жизни нет, а существование вирусов лишь подтвержает это правило, так как они могут проявлять свойства живых систем только в клетках.

Тканевой — Ткань представляет собой совокупность сходных по строению клеток, объединённых выполнением общей функции.

Органный — у большинства животных орган- это структурно-функциональное объединение нескольких типов тканей. Например, кожа человека как орган включает эпителий и соединительную ткань, которые вместе выполняют целый ряд функций среди которых наиболее значительная — защитная.

Организменный — многоклеточный организм представляет собой целостную систему органов, специализированных для выполнения различных функций. Различия между растениями и животными в строении и способах питания. Связь организмов со средой обитания, их приспособленность к ней.

Популяционно-видовой – совокупность организмов одного итого же вида, объединённых общим местом обитания, создаёт популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.

Биогеоценотический — биогеоценоз — совокупность организмов разных видов и различной сложности организации, всех факторов среды обитания.

Биосферный — биосфера -самый высокий уровень организации живой материи на нашей планете, включающая всё живое на Земле. Таким образом, живая природа представляет собой сложно организованную иерархическую систему.

2. Размножение на клеточном уровне, митоз его биологическая роль

Митоз (от греч.mitos- нить),тип клеточного деления, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке. Кариокинез, непрямое деление клетки, наиболее распространённый способ воспроизведения (репродукции)клеток, обеспечивающий тождественное распределение генетического материала между дочерними клетками и преемственность хромосом в ряду клеточных поколений.


Рис. 1. Схема митоза: 1, 2 – профаза; 3 – прометафаза; 4 – метафаза; 5– анафаза; 6 – ранняя телофаза; 7 – поздняя телофаза

Биологическое значение митоза определяется сочетанием в нём удвоения хромосом путём продольного расщепления их и равномерного распределения между дочерними клетками. Началу Митоз предшествует период подготовки, включающий накопление энергии, синтез дезоксирибонуклеиновой кислоты (днк) и репродукции центриолей. Источником энергии служат богатые энергией, или так называемые макроэргические соединения. Митоз не сопровождается усилением дыхания т.к окислительные процессы происходят в интерфазе (наполнение «энергетического резерву ара»). Периодическое наполнение и опустошения энергетического резерву ара-основа энергетики митоза.

Стадии митоза следующие. Единый процесс. Митоз обычно подразделяют на 4 стадии: профазу, метафазу, анафазу и телофазу.


Рис. 2. Митоз в меристематических клетках корешка лука (микрофотография). Интерфаза

Иногда описывают ещё одну стадию, предшествующую началу профазы — препрофазы (антефазу). Препрофаза — синтетическая стадия Митоз, соответствующая концу интерфазы (S- G 2 периоды) . включает удвоение ДНК и синтез материала МИТОТИЧЕСКОГО АППАРАТА. В ПРОФАЗЕ происходят РЕОРГАНИЗАЦИЯ ядра с КОНДЕНСАЦИЕЙ и спирализацией ХРОМОСОМ, разрушение ядерной оболочки и формирование митотического аппарата путём синтеза белков и «сборки» их в ориентированную систему ВЕРЕТЕНА ДЕЛЕНИЕ КЛЕТКИ.


Рис. 3. Митоз в меристематических клатках корешка лука (микрофотография). Профаза (фигура рыхлого клубка)


Рис. 4. Митоз в меристематических клетках корешка лука (микрофотография). Поздняя профаза (разрушение ядерной оболочки)

МЕТАФАЗА – заключается в движении ХРОМОСОМ к экваториальной плоскости (метакинез, или прометафаза),формировании экваториальной ПЛАСТИНКИ («материнской звезды») и в разъединении хроматид, или сестринских хромосом.


Рис. 5. Митоз в меристематических клетках корешка лука (микрофотография). Прометафаза


Рис.6. Митоз в меристематических клетках корешка лука (микрофотография). Метафаза


Рис. 7. Митоз в меристематических клетках корешка лука (микрофотография). Анафаза

АНАФАЗА — стадия расхождения хромосом к полюсам. Анафазное движение связано с удлинением центральных нитей ВЕРЕТИНА, раздвигающего митотические полюсы, и с укорочением хромосомальных МИКРОТРУБОЧЕК митотического аппарата. Удлинение центральных нитей ВЕРЕТЕНА происходит либо за счёт ПОЛЯРИЗАЦИИ «запасных макромолекул», достраивающих МИКРОТРУБОЧКИ веретина, либо за счёт дегидратации этой структуры. Укорочение хромосомальных микротрубочек обеспечивается СВОЙСТВАМИ сократительных белков митотического аппарата, способных к сокращению без утолщения. ТЕЛОФАЗА — заключается в реконструкции дочерних ядер из хромосом, собравшихся у полюсов, разделение клеточного тела (ЦИТОТИМИЯ, ЦИТОКИНЕЗ)и окончательном разрушении митотического аппарата с ОБРАЗОВАНИЕМ промежуточного тельца. Реконструкция дочерних ядер связана с десперализацией хромосом, ВОССТАНОВЛЕНИЕМ ядрышка и ядерной оболочки. Цитотомия осуществляется, путём образования клеточной ПЛАСТИНКИ (в растительной клетке) или путём образования борозды деления (в животной клетке).


Рис.8. Митоз в меристематических клетках корешка лука (микрофотография). Ранняя телофаза


Рис. 9. Митоз в меристематических клетках корешка лука (микрофотография). Поздняя телофаза

Механизм цитотомии связывают либо с сокращением желатинизированного кольца ЦИТОПЛАЗМЫ, опоясывающего ЭКВАТОР (гипотеза» сократимого кольца»),либо с расширением поверхности клетки вследствие распрямления петлеобразных белковых цепей (гипотеза «расширение МЕМБРАН»)

Продолжительность митоза — зависит от размеров клеток, их плоидности, числа ядер, а также от условий окружающей среды, в частности от температуры. В животных клетках Митоз длится 30 – 60 мин, в растительных 2-3 часа. Более длительные стадии митоза, связанные с процессами синтеза (препрофаза, профаза, телофаза) самодвижение хромосом (метакинез, анафаза) осуществляется быстро.

БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ МИТОЗА — постоянство строения и правильность функционирования органов и тканей многоклеточного организма были бы невозможны без сохранения одинакового набора генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает важные проявления жизнедеятельности: эмбриональное развитие, рост, восстановление органов и тканей после повреждения, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, случившихся клеток кожи, эпителия кишечника и пр.) У простейших митоз обеспечивает бесполое размножение.

3. Гаметогенез, характеристика половых клеток, оплодотворение

Половое клетки (гаметы) — мужские сперматозоиды и женские яйцеклетки (или яйца) развиваются в половых железах. В первом случае путь их развития называют СПЕРМАТОГЕНЕЗОМ (от греч. sperm — семя и genesis — происхождение), во втором – ОВОГЕНЕЗОМ (от. лат. оvо — яйцо)

Гаметы – половые клетки, участие их в оплодотворении, образовании зиготы (первая клетка нового организма). Результат оплодотворения – удвоение числа хромосом, восстановление их дип-лоидного набора в зиготе Особенности гамет – одинарный, гапло-идный набор хромосом по срав нению с диплоидным набором хромосом в клетках тела2. Этапы развития половых клеток: 1) увеличение путем мито за числа первичных половых кле ток с диплоидным набором хромосом, 2) рост первичных половых клеток, 3) созревание половых клеток.

СТАДИИ ГАМЕТОГЕНЕЗА — в процессе развития половых как сперматозоидов, так и яйцеклеток, выделяют стадий(рис). Первая стадия — период размножения, в котором первичные половые клетки делятся путём митоза, в результате чего увеличивается их количество. При сперматогенезе размножение первичных половых клеток очень интенсивное. Оно начинается с наступлением половой зрелости и протекает в течение всего репродуктивного периода. Размножение женских первичных половых клеток у низших позвоночных продолжается почти всю жизнь. У человека эти клетки с наибольшей интенсивностью размножаются лишь во внутриутробном периоде развития. После формирования женских половых желез — яичников, первичные половые клетки перестают делится, большая часть их погибает и рассасывается, остальные сохраняются в состоянии покоя до полового созревания.

Вторая стадия — период роста. У незрелых мужских гамет этот период выражен Нерезко. Размеры мужских гамет увеличиваются незначительно. Напротив, будущие яйцеклетки – овоциты увеличиваются иногда в сотни, тысячи и даже миллионы раз. У одних животных овоциты растут очень быстро — в течение нескольких дней или недель, у других видов рост продолжается месяцы и годы. Рост овоцитов осуществляется за счёт веществ, образуемых другими клетками организма.

Третья стадия-период созревания, или мейоз (рис1).


Рис. 9. Схема образования половых клеток

Клетки, вступающие в период мейоза, содержат диплоидный набор хромосом и уже удвоенное количество ДНК(2n 4с).

В процессе полового размножения у организмов любого вида из поколения в поколение сохраняется свойственное ему число хромосом. Это достигается тем, что перед слиянием половых клеток -оплодотворением — в процессе созревания в них уменьшается (редуцируется)число хромосом, т.е. из диплоидного набора (2n)образуется гаплоидный(n). Закономерности прохождения мейоза в мужских и женских половых клетках по существу одинаковы.

Список литературы

    Горелов А. А. Концепции современного естествознания. — М.: Центр, 2008.

    Дубнищева Т.Я. и др. Современное естествознание. — М.: Маркетинг, 2009.

    Лебедева Н.В., Дроздов Н.Н., Криволуцкий Д.А. Биологическое разнообразие. М., 2004.

    Мамонтов С.Г. Биология. М., 2007.

    Ярыгин В. Биология. М., 2006.

    Уровни организации живых систем. Клеточный уровень. Основные положения

    современной клеточной теории.

    Молекулярно-генетический уровень(элементарная единица- ген)

    Клеточный уровень (клетка)

    Организменный уровень, по-другому онтогенетический (особь)

    Популяционно-видовой (популяция)

    Биогеоценотический (биогеоценозы)

    Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов).элементарные явления представлены реакциями клеточного метаболизма. Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию,которые утилизируются в процессе биосинтеза белков в соответствии с существующей информацией. таким образом на клеточном уровне сопрягаются механизмы передачи информации и превращения веществ и энергии. Элементарные явления на этом уровне создают энергетическую и вещественную основу жизни на других уровнях. Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология Современная клеточная теория включает следующие основные положения:

    №1 Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет;.

    №2 Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование;

    №3 Клетки всех организмов сходны по своему химическому составу, строению и функциям;

    №4 Новые клетки образуются только в результате деления исходных клеток;

    №5 Клетки многоклеточных организмов образуют ткани, из тканей органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток;

    №6 Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток – дифференцировка.

    Структурно-функциональная организация про- и эукариотических клеток.

    Клетки прокариотического типа имеют особенно малые размеры (не более 0,5-3,0мкм в диаметре) . у них нет морфологически обособленного ядра, т.к. ядерный материал в виде ДНК не отграничен от цитоплазмы оболочкой. В клетке отсутствует развитая система мембран. Генетический аппарат образован единственной кольцевой хромосомой, которая лишена основных белков- гистонов. У прокариот отсутствует клеточный центр. Для них не типичны внутриклеточные перемещения цитоплазмы и амебоидное движение. Время, необходимое для образования двух дочерних клеток (время генерации), сравнительно мало и исчесляется десятками минут. Прокариотические клетки не делятся митозом. К этому типу клеток относятся бактерии и сине-зеленые водоросли. Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших является то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в физиологическом - полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организма. Таковы (например, у инфузорий) цитостом, цитофарингс и порошица, аналогичные пищеварительной системе, и сократительные вакуоли, аналогичные выделительной системе. Клетки многоклеточных организмов имеют оболочку. Плазмолемма (клеточная оболочка) образована мембраной покрытой снаружи слоем гликокаликса. В клетке выделяют ядро и цитоплазму. В ядре есть оболочка, ядерный сок, ядрышко, хроматин. Цитоплазма представлена основным веществом(матрикс, гиалоплазма), в котором распределены включения и органеллы(шероховатая и гладкая эпс, пластинчатый комплекс, митохондрии, рибосомы, полисомы, лизосомы, периксисомы, микрофибриллы, микротрубочки, центриоли клеточного центра. В растительных клетках выделяют еще и хлоропласты.
    В традиционном изложении клетку растительного или животного организма описывают как объект, отграниченный оболочкой, в котором выделяют ядро и цитоплазму. В ядре наряду с оболочкой и ядерным соком обнаруживаются ядрышко и хроматин. Цитоплазма представлена ее основным веществом (матриксом, гиалоплазмой), в котором распределены включения и органеллы.

    Жизненный цикл клетки. Его периоды для клеток с разной степенью

    Дифференцировки.

    ЖЦК- это период жизни клетки от ее образования (путем деления материнской клетки) до ее деления или смерти.

    ЖЦК способных к делению клеток:

    Митотический цикл: -автокаталитическая фаза-подготовка к делению. состоит из G1 периода(синтетический), S(синтетический) , G2(постсинтетический).

    В многоклеточном организме есть клетки которые после своего рождения вступают в период покоя G0 (это клетки выполняющие специфические функции в составе той или иной функции)

    ЖЦК не способных к делению клеток:

    Гетерокаталитическая интерфаза

    Митотический цикл. Митоз. Биологическое значение митоза. Возможная

    патология митоза.

    Митотический цикл состоит из автокаталитической интерфазы (G1-хромосомы деконденсированные, накапливаются белки и РНК, увеличивается число митохондрий, ;S- репликация ДНК, продолжается синтез белков и РНК;,G2- остановка синтеза ДНК, накапливается энергия, синтезируются РНК и белки, формирующие нити веретена деления) и митоза :

    Профаза 2n4c – ядерная мембрана растворяется, ядрышко исчезает, происходит конденсация и деспирализация хромосом.

    Метафаза 2n4c- хромосомы на экваторе клетки.

    Анафаза 4n4c- хроматиды расходятся к полюсам клетки.

    Телофаза 2n2c- формирование ядрышка, цитотомия, образование двух дочерних клеток. Биологическое значение митоза.

    Биологическое значение митоза огромно. Постоянство строения и правильность функционирования органов и тканей многоклеточного организма было бы невозможным без сохранения идентичного набора генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает важные явления жизнедеятельности, как эмбриональное развитие, рост, восстановление органов и тканей после повреждения, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, слущившихся клеток кожи и прочее). Патологии митоза:

    Нарушение конденсации хромосом ведет к набуханию и слипанию хромосом

    Повреждение веретена деления является причиной задержки митоза в метафазе и рассеиванию хромосом

    Нарушение расхождения хроматид в анафазу митоза ведет к появлению клеток с различным количеством хромосом

    При отсутствии цитотомии в конце телофазы образуются двух- и многоядерные клетки.

    Воспроизведение на молекулярном уровне. Репликация ДНК у про- и эукариот.

    Одна из основных функций ДНК- сохранение и передача наследственной информации. В основе этой функции лежит способность ДНК к самокопированию- репликация. В результате репликации из одной материнской молекулы ДНК образуются две дочерние молекулы ДНК- копии материнской.

    Геликаза-расплетает двойную спираль ДНК

    Дестабилизирующие белки – выпрямляют цепи ДНК

    ДНК-топоизомераза- разрывает фосфодиэфирные связи в одной из цепей ДНК, снимает напряжение спирали.

    РНК-праймаза- обеспечивает синтез РНК-затравки для фрагментов Оказаки

    ДНК-полимеразы- синтез полинуклеотидной цепи в направлении 5-3

    ДНК-лигаза –сшивает фрагменты Оказаки после удаления ДНК-затравки.

    Понятие о репарации ДНК.

    Cперматогенез

    Фазы сперматогенеза, их сущность. Место сперматогенеза в онтогенезе человека.

    Полигенное наследование. Понятие о МФБ. Пример полигенно наследуемой болезни в стоматологии.

    Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р 1 Р 1 Р 2 Р 2 Р 3 Р 3 Р 4 Р 4) до минимальной у гомозигот по рецессивным аллелям (р 1 р 1 р 2 р 2 р 3 р 3 р 4 р 4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 2 4 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 - минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные - практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента.

    В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные - другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе.

    Многим наследственным признакам нельзя дать достаточно точного качественного описания. Между особями наблюдаются постепенные малозаметные переходы» а при расщеплении нет ясно разграниченных фенотипических классов. Такие признаки изучают путем измерений или подсчетов позволяющих дать признаку цифровую характеристику. Например, вес и размеры тела, плодовитость, урожайность, продуктивность, скороспелость» содержание белков и жиров и т. п. Это и есть количественные признаки.

    И хотя четкой границы между качественными и количественными признаками нет (некоторые количественные признаки можно описать как качественные: высокий - карликовый» скороспелый - позднеспелый, а качественные можно выразить количественно, например, различия в окраске - количеством пигмента), можно выделить три важные особенности количественных признаков:

    1) непрерывное варьирование;

    2) зависимость от большого числа взаимодействующих генов;

    3) зависимость от внешней среды, т. е сильная подверженность влиянию модификационной изменчивости, результат которой непрерывен, что еще не смазывает фенотипические различия между генотипическими классами.

    Основная масса признаков» с которыми приходится иметь дело селекционеру, - количественные.

    Важная особенность полигенного наследования - чем больше генон, влияющих на признак, тем более непрерывной будет изменчивость этого признака. Л изменчивость за счет влияния внешних условий делает распределение количественных признаков еще более плавным и непрерывным. В итоге распределение изменчивости количественных признаков близко к нормальному, те, генотипов, определяющих промежуточные варианты, больше, чем генотипов, определяющих крайние варианты.

    Цитогенетический метод

    Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.
    Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.
    В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом:
    22 пар аутосом и одной пары половых хромосом (XX - у женщин, XY - у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.

    Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского - Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови - хроническому миелолейкозу.

    При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барра, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.

    Выявление многих наследствен- ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.

    Адаптация (от лат. adaptatio -- приспособление) - это динамический процесс, благодаря которому подвижные системы живых организмов, несмотря на изменчивость условий, поддерживают устойчивость, необходимую для существования, развития и продолжения рода. Именно механизм адаптации, выработанный в результате длительной эволюции, обеспечивает возможность существования организма в постоянно меняющихся условиях среды.

    1.Биологическая адаптация человека акклиматизаций

    2.Социальная адаптация - процесс активного приспособления индивида (группы индивидов) к социальной среде, проявляющийся в обеспечении условий, способствующих реализации его потребностей, интересов, жизненных целей. Социальная адаптация включает в себя приспособление прежде всего к условиям и характеру труда (учебы), а также к характеру межличностных отношений, экологической и культурной среде, условиям проведения досуга, быту. Процесс социальной адаптации тесно связан с процессом социализации индивида, интериоризации общественных и групповых норм. Социальная адаптация предполагает как приспособление индивида к условиям жизнедеятельности (пассивная адаптация), так и активное целенаправленное их изменение (активная адаптация). Эмпирически установлено, что доминирование у индивида второго из названных типов адаптационного поведения обуславливает более успешное протекание социальной адаптации. Выявлена также зависимость между характером ценностных ориентаций личности и типом адаптационного поведения. Так, у людей, ориентированных на проявление и совершенствование своих способностей, доминирует установка на активно-преобразовательное взаимодействие с социальной средой, у ориентированных на материальное благополучие - избирательность, целевая ограниченность социальной активности, у ориентированных на комфорт - приспособительное поведение. Ценностные ориентации определяют также требования индивида к характеру и условиям труда, быта, досуга, характеру межличностного общения. Например, монотонный труд на конвейере, как правило, угнетающе воздействует на людей с высоким образовательным уровнем, но удовлетворяет работников с низким уровнем образования и квалификации.

    Акклиматиза́ция - приспособление организмов к новым условиям существования после территориального, искусственного или естественного перемещения с образованием стабильных воспроизводящихся групп организмов (популяций); частным случаем акклиматизации является.

    Акклиматизация в жарком климате может сопровождаться потерей аппетита, расстройством деятельности кишечника, нарушением сна, понижением сопротивляемости к инфекционным заболеваниям. Отмеченные функциональные отклонения обусловливаются нарушением водно-солевого обмена. Снижается мышечный тонус, увеличивается потоотделение, понижается мочевыделение, учащаются дыхание, пульс и др. По мере увеличения влажности воздуха напряжение механизмов адаптации возрастает.

    Климатическую экстремальность для условий проживания населения в экстремально-холодных климатах создают:

    · Большая повторяемость (45-65 % дней за год) низких отрицательных температур.

    · Недостаток или полное отсутствие (полярная ночь) солнечной радиации зимой.

    · Преобладание пасмурной погоды (140-150 дней за год).

    · Сильный ветер с частыми низовыми метелями.

    36. Биологическая адаптация. Механизмы срочной и долговременной адаптации.

    Понятие о конституциональных типах.

    Биологическая адаптация человека - эволюционно возникшее приспособление организма человека к условиям среды, выражающееся в изменении внешних и внутренних особенностей органа, функции или всего организма к изменяющимся условиям среды. В процессе приспособления организма к новым условиям выделяют два процесса - фенотипическую или индивидуальную адаптацию, которую более правильно называть акклиматизаций (см.) и генотипическую адаптацию, осуществляемую путем естественного отбора полезных для выживания признаков. При фенотипической адаптации организм непосредственно реагирует на новую среду, что выражается в фенотипических сдвигах, компенсаторных физиологических изменениях, которые помогают организму сохранить в новых условиях равновесие со средой. При переходе к прежним условиям восстанавливается и прежнее состояние фенотипа, компенсаторные физиологические изменения исчезают. При генотипической адаптации в организме происходят глубокие морфо-физиологические сдвиги, которые передаются по наследству и закрепляются в генотипе в качестве новых наследственных характеристик популяций, этнических групп и рас.

    Специфические адаптивные механизмы, свойственные человеку, дают ему возможность переносить определенный размах отклонений факторов от оптимальных значений без нарушения нормальных функций организма.

    · Срочный этап адаптации возникает непосредственно после начала действия раздражителя на организм и может быть реализован лишь на основе ранее сформировавшихся физиологических механизмов. Примерами проявления срочной адаптации являются: пассивное увеличение теплопродукции в ответ на холод, увеличение теплоотдачи в ответ на тепло, рост легочной вентиляции и минутного объема кровообращения в ответ на недостаток кислорода. На этом этапе адаптации функционирование органов и систем протекает на пределе физиологических возможностей организма, при почти полной мобилизации всех резервов, но не обеспечивая наиболее оптимальный адаптивный эффект. Так, бег нетренированного человека происходит при близких к максимуму величинах минутного объема сердца и легочной вентиляции, при максимальной мобилизации резерва глюкогена в печени. Биохимические процессы организма, их скорость, как бы лимитируют эту двигательную реакцию, она не может быть ни достаточно быстрой, ни достаточно длительной;

    · Долговременная адаптация к длительно воздействующему стрессору возникает постепенно, в результате длительного, постоянного или многократно повторяющегося действия на организм факторов среды. Основными условиями долговременной адаптации являются последовательность и непрерывность воздействия экстремального фактора. По существу, она развивается на основе многократной реализации срочной адаптации и характеризуется тем, что в результате постоянного количественного накопления изменений организм приобретает новое качество - из неадаптированного превращается в адаптированный. Такова адаптация к недостижимой ранее интенсивной физической работе (тренировка), развитие устойчивости к значительной высотной гипоксии, которая ранее была несовместима с жизнью, развитие устойчивости к холоду, теплу, большим дозам ядов. Таков же механизм и качественно более сложной адаптации к окружающей действительности.

    В настоящее время отсутствует общепринятая теория и классифи­кация конституций.Многообразие подходов,предлагаемых разными специалистами,по­рождает множество оценок, определений конституции,отражает сложность проблем, стоящих перед конституциологией.На сегодняшний день наиболее удачным и полным опреде­лением конституции является следующее.Конституция(лат. constitutia - установление,организация)- это комплекс индивидуальных относительно устойчивых морфологичес­ких,физиологических и психических свойств организма,обусловленных наследственнос­тью,а также длительными и интенсивными влияниями окружающей среды, проявляющи­мися в его реакциях на различные воздействия(в том числе социальные и болезнетворные).

    В нашей стране наибольшее распространение получила классификация,прдложенная М.В.Черноруцким.Он выделил три типа конституции:

    1) астенический;

    2) нормостенический;

    3) гиперстенический

    Отнесение к тому или иному типу производилось на основании величины индекса Пинье (длина тела - (масса+ объем груди в покое). У астеников индекс Пинье больше 30, у гиперстеников- меньше 10, у нормостеников находится в пределах от10 до 30. Эти три типа конституции характеризуются не только особенностями внешних морфологических признаков, но и функциональных свойств.

    37. Экологическая дифференциация человечества. Понятие о расах и адаптивных

    типах людей.

    38. Адаптивные типы людей. Морфофункциональная характеристика

    представителей высокогорного и аридного типов.

    Адаптивный тип
    представляет собой норму биологической реакции на комплекс условий окружающей
    среды и проявляется в развитии морфофункциональных, биохимических и
    иммунологических признаков, обеспечивающих оптимальную приспособленность к
    данным условиям обитания.

    В комплексы признаков адаптивных типов из разных географических зон входят общие и специфические элементы. К первым относят, например, показатели
    костно-мускульной массы тела, количество иммунных белков сыворотки крови
    человека. Такие элементы повышают общую сопротивляемость организма к
    неблагоприятным условиям среды. Специфические элементы отличаются разнообразием
    и тесно связаны с преобладающими условиями в данном месте обитания - гипоксией, жарким или холодным климатом.
    Именно их сочетание служит основанием к выделению адаптивных типов:
    арктического, тропического, зоны умеренного климата, высокогорного, пустынь и
    др.

    Разберем особенности условий жизни человеческих популяций в различных
    климатогеографических зонах и адаптивные типы людей, сформировавшиеся в них.

    Условия высокогорья для человека во многих отношениях экстремальны. Их характеризуют низкое атмосферное давление, сниженное парциальное давление кислорода, холод,относительное однообразие пищи. Основным экологическим фактором формирования горного адаптивного типа явилась,по-видимому, гипоксия. У жителей высокогорья независимо от климатической зоны,расовой и этнической принадлежности наблюдаются повышенный уровень основногообмена, относительное удлинение длинных трубчатых костей скелета, расширениегрудной клетки, повышение кислородной емкости крови за счет увеличенияколичества эритроцитов, содержания гемоглобина и относительной легкости егоперехода в оксигемоглобин.

    Аридный адаптивный тип сформировался у жителей пустынь. Для пустыни главным вредным фактором является воздействие сухого воздуха, имеющего большую испаряющую способность. Кроме того, в тропических пустынях наблюдается круглогодичное сильное тепловое воздействие, а во внетропической зоне резкие сезонные перепады температуры – жара летом и холод зимой. В этих условиях, так же как и в тропиках, больше распространены длиннотелые морфотипы (до 70 %), мускульный и жировой компоненты развиваются слабо, однако общие размеры тела у жителей пустынь больше. Уровень основного обмена у них невысок, количество холестерина в крови снижено

    46. Трансмиссивные и нетрансмиссивные природно-очаговые заболевания.

    Экологические основы их выделения.

    47. Предмет медицинской гельминтологии. Понятие о гео- и биогельминтах,

    антропонозах и зоонозах.

    46. ПРИРОДНО-ОЧАГОВЫЕ ЗАБОЛЕВАНИЯ

    1) возбудители циркулируют в природе от одного животного к другому независимо от человека;

    2) резервуаром возбудителя служат дикие животные;

    3) болезни распространены не повсеместно, а на ограниченной территории с определенным ландшафтом, климатическими факторами и биогеоценозами.

    Компонентами природного очага являются:

    1) возбудитель;

    2) восприимчивые к возбудителю животные - резервуары:

    3) соответствующий комплекс природно-климатических условий, в котором существует данный биогеоценоз.

    Особую группу природно-очаговых заболеваний составляют трансмиссивные болезни , такие, как лейшманиоз, трипаносомоз, клещевой энцефалит и т.д. Поэтому обязательным компонентом природного очага трансмиссивного заболевания является также наличие переносчика.

    Трансмиссивные болезни - заразные болезни человека, возбудители которых передаются кровососущими членистоногими (насекомыми и клещами).

    Трансмиссивные болезни включают более 200 нозологических форм, вызываемых вирусами, бактериями, риккетсиями, простейшими и гельминтами. Часть из них передаётся только с помощью кровососущих переносчиков (облигатные трансмиссивные болезни, например сыпной тиф, малярия и др.), часть различными способами, в том числе и трансмиссивно (например, туляремия, заражение которой происходит при укусах комаров и клещей, а также при снятии шкурок с больных животных).

    Переносчики

    инфицированных вирусами, у клещей, инфицированных вирусами, риккетсиями и спирохетами, и у москитов, инфицированных флебовирусами.

    В организме механических переносчиков возбудители не развиваются и не размножаются. Попавший на хоботок, в кишечник или на поверхность тела механического переносчика возбудитель передается непосредственно (при укусе) либо путем контаминации ран, слизистых оболочек хозяина или пищевых продуктов.

    Характеристика переносчика и механизм передачи возбудителя

    Область распространения и особенности эпидемиологии

    Профилактика

    Профилактика большинства трансмиссивных болезней проводится путем уменьшения численности переносчиков. С помощью этого мероприятия в СССР удалось ликвидировать такие трансмиссивные антропонозы, как вшиный возвратный тиф, москитная лихорадка, городской кожный лейшманиоз. Большое значение имеют проведение мелиоративных работ, создание вокруг населённых пунктов зон, свободных от диких грызунов и переносчиков возбудителей трансмиссивных болезней.

    Некоторые природно-очаговые заболевания характеризуются эндемизмом , т.е. встречаемостью на строго ограниченных территориях. Это связано с тем, что возбудители соответствующих заболеваний, их промежуточные хозяева, животные-резервуары или переносчики встречаются только в определенных биогеоценозах.

    Небольшое количество природно-очаговых заболеваний встречается практически повсеместно. Это такие заболевания, возбудители которых, как правило, не связаны в цикле своего развития с внешней средой и поражают самых разнообразных хозяев. К заболеваниям такого рода относятся, например, токсоплазмоз и трихинеллез. Этими природно-очаговыми болезнями человек может заразиться в любой природно-климатической зоне и в любой экологической системе.

    Абсолютное же большинство природно-очаговых болезней поражает человека только в случае попадания его в соответствующий очаг (на охоте, рыбной ловле, в туристических походах, в геологических партиях и т.д.) при условиях его восприимчивости к ним. Так, таежным энцефалитом человек заражается при укусе инфицированным клещом, а описторхозом - съев недостаточно термически обработанную рыбу с личинками кошачьего сосальщика.

    Профилактика природно-очаговых заболеваний представляет особые сложности. В связи с тем, что в циркуляцию возбудителя бывает включено большое количество хозяев, а часто и переносчиков, разрушение целых биогеоценотических комплексов, возникших в результате эволюционного процесса, экологически неразумно, вредно и даже технически невозможно. Лишь в тех случаях, если очаги являются небольшими и хорошо изученными, возможно комплексное преобразование таких биогеоценозов в направлении, исключающем циркуляцию возбудителя. Так, рекультивация опустыненных ландшафтов с созданием на их месте орошаемых садоводческих хозяйств, проводящаяся на фоне борьбы с пустынными грызунами и москитами, может резко снизить заболеваемость населения лейшманиозами. В большинстве же случаев природно-очаговых болезней профилактика их должна быть направлена в первую очередь на индивидуальную защиту (предотвращение от укусов кровососущими членистоногими, термическая обработка пищевых продуктов и т.д.) в соответствии с путями циркуляции в природе конкретных возбудителей.

    Черви- это многоклеточные, трехслойные, первичноротые, двусторонне-симметричные животные. Их тело имеет удлиненную форму, а кожно-мускульный мешок состоит из гладких или поперечно-полосатых мышц и покровных тканей.

    Гельминты могут обитать у человека практически во всех органах. В соответствии с этим различны пути проникновения их в организм человека, симптоматика заболеваний и методы диагностики.

    В организации живого в основном различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобальный (биосферный) уровни. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

    Молекулярный уровень . Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов, и стероидов, находящихся в клетках и, как уже отмечено, получивших название биологических молекул.

    Размеры биологических молекул характеризуются довольно значительным разнообразием, которое определяется занимаемым ими пространством в живой материи. Самыми малыми биологическими молекулами являются нуклеотиды, аминокислоты и сахара. Напротив, белковые молекулы характеризуются значительно большими размерами. Например, диаметр молекулы гемоглобина человека составляет 6,5 нм.

    Биологические молекулы синтезируются из низкомолекулярных предшественников, которыми являются окись углерода, вода и атмосферный азот и которые в процессе метаболизма превращаются через промежуточные соединения возрастающей молекулярной массы (строительные блоки) в биологические макромолекулы с большой молекулярной массой (рис. 42). На этом уровне начинаются и осуществляются важнейшие процессы жизнедеятельности (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.).

    Физикохимическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основной элементарный состав живого представлен углеродом, кислородом, водородом, азотом. Из групп атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлено нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров, и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами их неспецифических частей (участков).

    Все макромолекулы универсальны, т. к. построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин и тимин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК. В состав большинства белков входит 100-500 аминокислот, но последовательности аминокислот в молекулах белков неповторимы, что делает их уникальными.

    Объединяясь, макромолекулы разных типов образуют надмоле-кулярные структуры, примерами которых являются нуклеопроте-иды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков). В этих структурах комплексы связаны нековалентно, однако нековалентное связывание весьма специфично. Биологическим макромолекулам присущи непрерывные превращения, которые обеспечиваются химическими реакциями, катализируемыми ферментами. В этих реакциях ферменты превращают субстрат в продукт реакции в течение исключительно короткого времени, которое может составлять несколько миллисекунд или даже микросекунд. Так, например, время раскручивания двухцепочечной спирали ДНК перед ее репликацией составляет всего лишь несколько микросекунд.

    Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Этим свойством не обладают другие биологические молекулы.

    Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, т. к. они являются основными структурными элементами клеток, катализаторами и регуляторами различных процессов, протекающих в клетках. Углеводы и липиды являются важнейшими источниками энергии, тогда как стероиды в виде стероидных гормонов имеют значение для регуляции ряда метаболических процессов.

    Специфика биологических макромолекул определяется также и тем, что процессы биосинтеза осуществляются в результате одних и тех же этапов метаболизма. Больше того, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов независимо от их видовой принадлежности. Универсальными являются также окисление жирных кислот, глико-лиз и другие реакции. Например, гликолиз происходит в каждой живой клетке всех организмов-эукариотов и осуществляется в результате 10 последовательных ферментативных реакций, каждая из которых катализируется специфическим ферментом. Все аэробные организмы-эукариоты обладают молекулярными «машинами» в их митохондриях, где осуществляется цикл Кребса и другие реакции, связанные с освобождением энергии. На молекулярном уровне происходят многие мутации. Эти мутации изменяют последовательность азотистых оснований в молекулах ДНК.

    На молекулярном уровне осуществляется фиксация лучистой энергии и превращение этой энергии в химическую, запасаемую в клетках в углеводах и других химических соединениях, а химической энергии углеводов и других молекул - в биологически доступную энергию, запасаемую в форме макроэнергетических связей АТФ. Наконец, на этом уровне происходит превращение энергии макроэргических фосфатных связей в работу - механическую, электрическую, химическую, осмотическую, механизмы всех метаболических и энергетических процессов универсальны.

    Биологические молекулы обеспечивают также преемственность между молекулярным и следующим за ним уровнем (клеточным), т. к. являются материалом, из которого образуются надмолекуляр-ные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

    Клеточный уровень . Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организмов (бактерии, простейшие и другие), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого ^уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются ос-иовной формой организации живой материи, элементарными еди-Вицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клетками организмов-эукариотов, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки». Надмолекулярные структуры на этом уровне формируют мембранные системы и органеллы клеток (ядра, митохондрии и др.).

    Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных единиц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток эукариотов значительно развиты мембранные системы (плазматическая мембрана, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы).

    Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды, а также пространственное разделение в клетках многих биологических молекул. Мембрана клеток обладает высокоизбирательной проницаемостью. Поэтому их физическое состояние позволяет постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

    Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические)."Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, тогда как на внутренних мембранах митохондрии осуществляется окислительное фосфорилирование.

    Компоненты мембран находятся в движении. Построенным главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток - важнейшее свойство живого.

    Тканевой уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточ-ностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

    Органный уровень . Представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных орга-нелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счет разного количества тканей. Для позвоночных характерна цефализация, защищающаяся в сосредоточении важнейших центров и органов чувств в голове.

    Организменный уровень . Этот уровень представлен самими организмами - одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность орга-низменного уровня заключается в том, что на этом уровне происходит декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида. Организмы уникальны в природе, потому что уникален их генетический материал, детерминирующий развитие, функции и взаимоотношение их с окружающей средой.

    Популяционный уровень . Растения и животные не существуют изолированно; они объединены в популяции. Создавая надорганиз-менную систему, популяции характеризуются определенным генофондом и определенным местом обитания. В популяциях начинаются и элементарные эволюционные преобразования, происходит выработка адаптивной формы.

    Видовой уровень. Этот уровень определяется видами растений, животных и микроорганизмов, существующими в природе в качестве живых звеньев. Популяционный состав видов чрезвычайно разнообразен. В составе одного вида может быть от одной до многих тысяч популяций, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Виды представляют собой результат эволюции и характеризуются сменяемостью. Ныне существующие виды не похожи на виды, существовавшие в прошлом. Вид является также единицей классификации живых существ.

    Биоценотический уровень. Представлен биоценозами - сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависимых сообществ организмов и абиотических факторов среды. Экосистемам присуще динамическое (подвижное) равновесие между организмами и абиотическими факторами. На этом уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

    Биосферный (глобальный) уровень. Этот уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

    Между разными уровнями организации живого существует диалектическое единство, живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. связан с появлением нового качества.

    Вопросы для обсуждения

    1. В чем заключается всеобщий методологический подход к пониманию сущности жизни? Когда он возник и в связи с чем?

    2. Можно ли определить сущность жизни? Если да, то в чем заключается это определение и каковы его научные обоснования?

    3. Возможна ли постановка вопроса о субстрате жизни?

    4. Назовите свойства живого. Укажите, какие из этих свойств характерны для неживого и какие только для живого.

    5. Какое значение для биологии имеет подразделение живого на уровни организации? Имеет ли такое подразделение практическое значение?

    6. Какими общими чертами характеризуются разные уровни организации живого?

    7. Почему нуклеопротеиды считают субстратом жизни и при каких условиях они выполняют эту роль?

    Литература

    Верная Д. Возникновение жизни М.: Мир. 1969. 391 стр.

    Опарин А. В. Материя, жизнь, интеллект. М.: Наука. 1977. 204 стр

    Пехов А. П. Биология и научно-технический прогресс. М.: Знание. 1984. 64 стр.

    Karcher S. J. Molecular Biology. Acad. Press. 1995. 273 pp.

    Murphy M. P., O"Neill L. A. (Eds.) What is Life? The Next Fifty Years. Cambridge University Press. 1995. 203 pp.