Органи́ческая хи́мия. Советы изучающему органическую химию Связь органической химии с химической промышленностью

Органи́ческая хи́мия - раздел химии, изучающий соединения углерода, их структуру, свойства, методы синтеза.Органическими называют соединения углерода с другими элементами. Наибольшее количество соединений углерод образует с так называемыми элементами-органогенами: H, N, O, S, P.Способность углерода соединяться с большинством элементов и образовывать молекулы различного состава и строения обусловливает многообразие органических соединений (к концу XX века их число превысило 10 млн, сейчас более 20 млн[источник не указан 229 дней]). Органические соединения играют ключевую роль в существовании живых организмов.

Предмет органической химии включает следующие цели, экспериментальные методы и теоретические представления:

Выделение индивидуальных веществ из растительного, животного или ископаемого сырья

Синтез и очистка соединений

Определение структуры веществ

Изучение механизмов химических реакций

Выявление зависимостей между структурой органических веществ и их свойствами

История

Способы получения различных органических веществ были известны ещё с древности. Египтяне и римляне использовали красители индиго и ализарин, содержащиеся в растительных веществах. Многие народы знали секреты производства спиртных напитков и уксуса из сахар- и крахмалсодержащего сырья.Во времена средневековья к этим знаниям ничего не прибавилось, некоторый прогресс начался только в XVI-XVII в: были получены некоторые вещества, в основном путём перегонки определённых растительных продуктов. В 1769-1785 г. Шееле выделил несколько органических кислот, таких как яблочная, винная, лимонная, галловая, молочная и щавелевая. В 1773 г. Руэль выделил из человеческой мочи мочевину.Выделенные из животного или растительного сырья продукты имели между собой много общего, но отличались от неорганических соединений. Так возник термин «Органическая химия» - раздел химии, изучающий вещества, выделенные из организмов (определение Берцелиуса, 1807 г.). При этом полагали, что эти вещества могут быть получены только в живых организмах благодаря «жизненной силе».Как принято считать, органическая химия как наука появилась в 1828 году когда Фридрих Вёлер впервые получил органическое вещество - мочевину - в результате упаривания водного раствора цианата аммония (NH4OCN).Важным этапом стала разработка теории валентности Купером и Кекуле в 1857 г., а также теории химического строения Бутлеровым в 1861 г. В основу этих теорий были положены четырёхвалентность углерода и его способность к образованию цепей. В 1865 году Кекуле предложил структурную формулу бензола, что стало одним из важнейших открытий в органической химии. В 1875 г. Вант-Гофф и Ле Бель предложили тетраэдрическую модель атома углерода, по которой валентности углерода направлены к вершинам тетраэдра, если атом углерода поместить в центр этого тетраэдра. В 1917 году Льюис предложил рассматривать химическую связь с помощью электронных пар.В 1931 г. Хюккель применил квантовую теорию для объяснения свойств альтернантных ароматических углеродов, чем основал новое направление в органической химии - квантовую химию. В 1933 г. Ингольд провёл изучение кинетики реакции замещения у насыщенного атома углерода, что привело к масштабному изучению кинетики большинства типов органических реакций.Историю органической химии принято излагать в связи с открытиями сделанными в области строения органических соединений, однако такое изложение больше связано с историей химии вообще. Гораздо интереснее рассматривать историю органической химии с позиции материальной базы, т. е. собственно предмета изучения органической химии.На заре органической химии предметом изучения были преимущественно субстанции биологического происхождения. Именно этому факту органическая химия обязана своим названием. Научно-технический прогресс не стоял на месте, и со временем основной материальной базой органической химии стала каменноугольная смола, выделяемая при получении кокса прокаливанием каменного угля. Именно на основе переработки каменноугольной смолы в конце XIX века возник основной органический синтез. В 50-60 годах прошлого века произошёл переход основного органического синтеза на новую базу - нефть. Таким образом появилась новая область химии - нефтехимия. Огромный потенциал, который был заложен в новом сырье вызвал бум в органической химии и химии вообще. Появление и интенсивное развитие такой области как химии полимеров обязана прежде всего новой сырьевой базе.Несмотря на то, что современная органическая химия в качестве материальной базы по прежнему использует сырье биологического происхождения и каменноугольную смолу, объём переработки этих видов химического сырья по сравнению с переработкой нефти мал. Смена материально-сырьевой базы органической химии была вызвана прежде всего возможностями наращивания объёмов производства.

Классификация органических соединений

Правила и особенности классификации:

В основе классификации лежит структура органических соединений. Основа описания структуры - структурная формула. Атомы элементов обозначаются латинскими символами, как они обозначены в периодической таблице химических элементов (таблице Менделеева). Водородные и электронодефицитные связи обозначаются пунктирной линией, ионные связи обозначаются указанием зарядов частиц, входящих в состав молекулы. Поскольку в подавляющее большинство органических молекул входит водород, его обычно не обозначают при изображении структуры. Таким образом, если в структуре у одного из атомов изображена недостаточная валентность, значит, возле этого атома расположен один или несколько атомов водорода.Атомы могут образовывать циклические и ароматические системы.

Основные классы органических соединений

Углеводороды - химические соединения, состоящие только из атомов углерода и водорода. В зависимости от топологии строения углеродного скелета углеводороды подразделяют на ациклические и карбоциклические. В зависимости от кратности углерод-углеродных связей углеводороды подразделяют на предельные (алка́ны или насыщенные), не содержащие кратные связи в своей структуре и непредельные или ненасыщенные - имеют в своём составе хотя бы одну двойную и/или тройную связь (алкены, алкины, диены). В свою очередь циклические углеводороды разделяют на алициклические (с открытой цепью) и циклоалканы (предельные с замкнутой цепью), ароматические углеводороды (непредельные, содержащие цикл). Ациклические (с открытой цепью)Карбоциклические (с замкнутой цепью)

предельныенепредельныепредельныенепредельные

с одинарной связьюс двойной связьюс тройной связьюс двумя двойными связямис одинарной связьюс бензольным кольцом

ряд метана (алканы)ряд этилена (алкены)ряд ацетилена (алкины)ряд диеновых углеводородовряд полиметиленов (нафтены)ряд бензола (ароматические углеводороды, или арены).Соединения с гетероатомами в функциональных группах - соединения, в которых углеродный радикал R связан с функциональной группой. По характеру функциональных групп делятся на:

Спирты, фенолы. Спирты́ (устар. алкого́ли, англ. alcohols; от лат. spiritus - дух) - органические соединения, содержащие одну или более гидроксильных групп (гидроксил, −OH), непосредственно связанных с насыщенным (находящемся в состоянии sp³ гибридизации) атомом углерода. Спирты можно рассматривать как производные воды (H−O−H), в которых один атом водорода замещен на органическую функциональную группу: R−O−H. В номенклатуре IUPAC для соединений, в которых гидроксильная группа связана с ненасыщенным (находящемся в состоянии sp2 гибридизации атомом углерода, рекомендуются названия «енолы» (гидроксил связан с винильной C=C связью) и «фенолы» (гидроксил связан с бензольным или другим ароматическим циклом).

Простые эфиры (этеры) - органические вещества, имеющие формулу R-O-R1, где R и R1 - углеводородные радикалы. Необходимо учитывать, что такая группа может входить в состав других функциональных групп соединений, не являющихся простыми эфирами (например, Кислородсодержащие органические соединения).

Сложные эфиры (эстеры) - производные оксокислот (как карбоновых так и минеральных) RkE(=O)l(OH)m, (l ≠ 0), формально являющиеся продуктами замещения атомов водорода гидроксилов -OH кислотной функции на углеводородный остаток (алифатический, алкенильный, ароматический или гетероароматический); рассматриваются также как ацилпроизводные спиртов. В номенклатуре IUPAC к сложным эфирам относят также ацилпроизводные халькогенидных аналогов спиртов (тиолов, селенолов и теллуролов). Отличаются от простых эфиров, в которых два углеводородных радикала соединены атомом кислорода (R1-O-R2).

Соединения, содержащие карбонильную группу

Альдегиды (от лат. alcohol dehydrogenatum - спирт, лишённый водорода) - класс органических соединений, содержащих карбонильную группу (С=О) с одним алкильным или арильным заместителем.

Кетоны - это органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Общая формула кетонов: R1–CO–R2. Наличие в кетонах именно двух атомов углерода, непосредственно связанных с карбонильной группой, отличает их от карбоновых кислот и их производных, а также альдегидов.

Хиноны - полностью сопряжённые циклогексадиеноны и их аннелированные аналоги. Существуют два класса хинонов: пара-хиноны с пара - расположением карбонильных групп (1,4-хиноны) и орто-хиноны с орто-расположением карбонильных групп (1,2-хиноны). Благодаря способности к обратимому восстановлению до двухатомных фенолов некоторые производные пара-хинонов участвует в процессах биологического окисления в качестве коферментов ряда оксидоредуктаз.

Соединения, содержащие карбоксильную группу (Карбоновые кислоты, сложные эфиры)

Металлоорганические соединения

Гетероциклические - содержат гетероатомы в составе кольца. Различаются по числу атомов в цикле, по виду гетероатома, по количеству гетероатомов в цикле.

Органического происхождения - как правило соединения очень сложной структуры, зачастую принадлежат сразу к нескольким классам органических веществ, часто полимеры. Из-за этого их сложно классифицировать и их выделяют в отдельный класс веществ.

Полимеры - вещества очень большой молекулярной массы, которые состоят из периодически повторяющихся фрагментов - мономерных звеньев.

Строение органических молекул

Органические молекулы в основном образованы ковалентными неполярными связями C-C, или ковалентными полярными типа C-O, C-N, C-Hal. Согласно октетной теории Льюиса и Косселя молекула является устойчивой, если внешние орбитали всех атомов полностью заполнены. Для таких элементов как C, N, O, Галогены необходимо 8 электронов, чтобы заполнить внешние валентные орбитали, для водорода необходимо только 2 электрона. Полярность объясняется смещением электронной плотности в сторону более электроотрицательного атома.

Классическая теория валентных связей не в состоянии объяснить все типы связей, существующие в органических соединениях, поэтому современная теория использует методы молекулярных орбиталей и квантовохимические методы.

Строение органического вещества

Свойства органических веществ определяются не только строением их молекул, но и числом и характером их взаимодействий с соседними молекулами, а также взаимным пространственным расположением. Наиболее ярко эти факторы проявляются в различии свойств веществ, находящихся в разных агрегатных состояниях. Так, вещества, легко взаимодействующие в виде газа, могут совершенно не реагировать в твёрдом состоянии, или приводить к другим продуктам.

В твёрдых органических веществах, в которых наиболее ярко проявляются эти факторы, различают органические кристаллы и аморфные тела. Их описанием занимается наука "химия органического твёрдого тела", основание которой связывают с именем советского физика-кристаллографа А. И. Китайгородского. Примеры полезных органических твёрдых тел - органические люминофоры, разнообразные полимеры, сенсоры, катализаторы, электропроводники, магниты и др.

Особенности органических реакций

В неорганических реакциях обычно участвуют ионы, они проходят быстро и до конца при комнатной температуре. В органических реакциях часто происходят разрывы ковалентных связей с образованием новых. Как правило, эти процессы требуют особых условий: определённой температуры, времени реакции, и часто наличия катализатора. Обычно протекает не одна, а сразу несколько реакций, поэтому выход целевого вещества зачастую не превышает 50 %. Поэтому при изображении органических реакций используют не уравнения, а схемы без расчёта стехиометрии.

Реакции могут протекать очень сложным образом и в несколько стадий, не обязательно так, как реакция условно изображена на схеме. В качестве промежуточных соединений могут возникать карбкатионы R+, карбанионы R−, радикалы R·, карбены CX2, катион-радикалы, анион-радикалы, и другие активные или нестабильные частицы, обычно живущие доли секунды. Подробное описание всех превращений, происходящих на молекулярном уровне во время реакции, называется механизмом реакции.Реакции классифицируются в зависимости от способов разрыва и образования связей, способов возбуждения реакции, её молекулярности.

Определение структуры органических соединений

За все время существования органической химии как науки важной задачей было определить структуру органических соединений. Это значит узнать, какие атомы входят в состав соединения, в каком порядке эти атомы связаны между собой и как расположены в пространстве.

Существует несколько методов решения этих задач.

Элементный анализ. Заключается в том, что вещество разлагается на более простые молекулы, по количеству которых можно определить количество атомов, входящее в состав соединения. С помощью этого метода невозможно установить порядок связей между атомами. Часто используется лишь для подтверждения предположенной структуры.

Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния (ИК-спектроскопия и КР-спектроскопия). Вещество взаимодействует с электромагнитным излучением (светом) инфракрасного диапазона (в ИК-спектроскопии наблюдают поглощение, в КР-спектроскопии - рассеяние излучения). Этот свет при поглощении возбуждает колебательные и вращательные уровни молекул. Опорными данными являются число, частота и интенсивность колебаний молекулы, связанных с изменением дипольного момента (ИК-спектроскопия) или поляризуемости (КР-спектроскопия). Методы позволяют установить наличие определённых функциональных групп в молекуле. Часто используются и для того чтобы подтвердить идентичность исследуемого вещества с некоторым уже известным веществом путём сравнения спектров.

Масс-спектроскопия. Вещество при определённых условиях (электронный удар, химическая ионизация и др.) превращают в ионы без потери атомов (молекулярные ионы) и с потерей (осколочные). Позволяет определить молекулярный вес и иногда позволяет установить наличие различных функциональных групп.

Метод ядерного магнитного резонанса (ЯМР). Основан на взаимодействии ядер, обладающих собственным магнитным моментом (спином) и помещённых во внешнее постоянное магнитное поле, с электромагнитным излучением радиочастотного диапазона. Один из главных методов, который может быть использован для определения химической структуры. Метод используют также для изучения пространственного строения молекул, динамики молекул. В зависимости от ядер, взаимодействующих с излучением различают, например:Метод протонного магнитного резонанса (ПМР). Позволяет определить положение атомов водорода 1H в молекуле.Метод ЯМР 19F. Позволяет определить наличие и положение атомов фтора в молекуле.Метод ЯМР 31P. Позволяет определить наличие, положение и валентное состояние атомов фосфора в молекуле.Метод ЯМР 13С. Позволяет определить число и типы атомов углерода в молекуле. Используется для исследования формы углеродного скелета молекулы.

В отличие от первых трёх в последнем методе используется неосновной изотоп элемента, поскольку ядро основного изотопа углерода - 12С имеет нулевой спин и не может наблюдаться методом ядерного магнитного резонанса, так же как и ядро 16O - единственного природного изотопа кислорода.Метод ультрафиолетовой спектроскопии (УФ-спектроскопия) или Спектроскопия электронных переходов. Метод основан на поглощении электромагнитного излучения ультрафиолетовой и видимой области спектра при переходе электронов в молекуле с верхних заполненных уровней на вакантные уровни (возбуждение молекулы). Чаще всего используется для определения наличия и характеристик коньюгированных π-систем.Методы аналитической химии. Позволяют определить наличие некоторых функциональных групп по специфическим химическим реакциям, факт протекания которых можно фиксировать визуально или с помощью других методов.

Описанных выше методов, как правило, полностью хватает для определения структуры неизвестного вещества.

Если вы поступили в университет, но к этому времени так и не разобрались в этой нелегкой науке, мы готовы раскрыть вам несколько секретов и помочь изучить органическую химию с нуля (для "чайников"). Вам же остается только читать и внимать.

Основы органической химии

Органическая химия выделена в отдельный подвид благодаря тому, что объектом ее изучения является все, в составе чего есть углерод.

Органическая химия – раздел химии, который занимается изучением соединения углерода, структуру таких соединений, их свойства и методы соединения.

Как оказалось, углерод чаще всего образует соединения со следующими элементами - H, N, O, S, P. Кстати, эти элементы называются органогенами .

Органические соединения, количество которых сегодня достигает 20 млн, очень важны для полноценного существования всех живых организмов. Впрочем, никто и не сомневался, иначе человек просто закинул бы изучение этого непознанного в долгий ящик.

Цели, методы и теоретические представления органической химии представлены следующим:

  • Разделение ископаемого, животного или растительного сырья на отдельные вещества;
  • Очистка и синтез разных соединений;
  • Выявление структуры веществ;
  • Определение механики протекания химических реакций;
  • Нахождение зависимости между структурой и свойствами органических веществ.

Немного из истории органической химии

Вы можете не верить, но еще в далекой древности жители Рима и Египта понимали кое-что в химии.

Как мы знаем, они пользовались натуральными красителями. А нередко им приходилось использовать не готовый естественный краситель, а добывать его, вычленяя из цельного растения (например, содержащиеся в растениях ализарин и индиго).

Можем вспомнить и культуру употребления алкоголя. Секреты производства спиртных напитков известны в каждом народе. Причем многие древние народы знали рецепты приготовления «горячей воды» из крахмал- и сахарсодержащих продуктов.

Так продолжалось долгие, долгие годы, и только в 16-17 веках начались какие-то изменения, небольшие открытия.

В 18 веке некто Шееле научился выделять яблочную, винную, щавелевую, молочную, галловую и лимонную кислоту.

Тогда всем стало ясно, что продукты, которые удалось выделить из растительного или животного сырья, имели много общих черт. В то же время они сильно отличались от неорганических соединений. Поэтому служителям науки нужно было срочно выделить их в отдельный класс, так и появился термин «органическая химия».

Несмотря на то, что сама органическая химия как наука появилась лишь в 1828 году (именно тогда господину Вёлеру удалось выделить мочевину путем упаривания цианата аммония), в 1807 году Берцелиус ввел первый термин в номенклатуру в органической химии для чайников:

Раздел химии, который изучает вещества, полученные из организмов.

Следующий важный шаг в развитии органический химии – теория валентности, предложенная в 1857 году Кекуле и Купером, и теория химического строения господина Бутлерова от 1861 года. Уже тогда ученые стали обнаруживать, что углерод – четырехвалентен и способен образовывать цепи.

В общем, с эти самых пор наука регулярно испытывала потрясения и волнения благодаря новым теориям, открытиям цепочкам и соединениям, что позволяло так же активно развиваться органической химии.

Сама наука появилась благодаря тому, что научно-технический прогресс не в состоянии был стоять на месте. Он продолжал и продолжал шагать, требуя новых решений. И когда каменноугольной смолы в сфере промышленности перестало хватать, людям просто пришлось создать новый органический синтез, который со временем перерос в открытие невероятно важного вещества, которое и по сей день дороже золота – нефть. Кстати, именно благодаря органической химии на свет появилась ее «дочка» - поднаука, которая получила название «нефтехимия».

Но это уже совсем другая история, которую вы можете изучить сами. Далее мы предлагаем вам посмотреть научно-популярное видео про органическую химию для чайников:

Ну а если вам некогда и срочно нужна помощь профессионалов , вы всегда знаете, где их найти.

Растительного и животного происхождения. Не все соединения углерода классифицируются как органические. Например, СО 2 , HCN, CS 2 традиционно относят к неорганическим. Условно можно считать, что прототипом органических соединений является СН 4 .

К настоящему времени число известных органических соединений превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Многообразие органических соединений определяется уникальной способностью соединяться друг с другом простыми и кратными связями, образовывать соединения с практически неограниченным числом атомов, связанных в цепи, циклы, бициклы, трициклы, полициклы, каркасы и др., образовывать прочные связи почти со всеми элементами периодической системы, а также явлением - существованием разных по свойствам веществ, обладающих одним и тем же составом и молекулярной массой.

Многообразие и громадное число органических соединений определяет значение органической химии как крупнейшего раздела современной химии. Окружающий нас мир построен главным образом из органических соединений; пища, . одежда, лекарства, взрывчатые вещества, материалы, без которых невозможно создание транспорта, книгопечатания, проникновение в космос и прочее, - все это состоит из органических соединений. Важнейшую роль органические соединения играют в процессах жизнедеятельности. На стыке органической химия с неорганической химией и возникли химия металлоорганических соединений и биоорганическая химия соответственно, широко использующие методы и представления органической химии . Отдельный раздел органической химии составляет химия высокомолекулярных соединений: по величине органические вещества делятся на низкомолекулярные (с молекулярной массой от нескольких десятков до нескольких сотен, редко до тысячи) и высокомолекулярные (макромолекулярные; с молекулярной массой порядка 10 4 -10 6 и более).

Органическая химия изучает не только соединения, получаемые из растительных и животных организмов (так называемые природные вещества), но в основном соединения, созданные искусственно с помощью лабораторного или промышленного органического синтеза. Более того, объектами изучения компьютерной органической химии являются соединения, не только не существующие в живых организмах, но которые, по-видимому, нельзя получить искусственно (например, гипотетический аналог метана, имеющий не природное тетраэдрическое строение, а форму плоского квадрата, в центре которого лежит атом С, а в вершинах - атомы Н).

Органический синтез связывает органическую химию с химической промышленностью, как малотоннажной ( , производство лекарств, витаминов, ферментов, и др.), так и крупнотоннажной ( , производство искусственного волокна, переработка и и др.).

Строение органических соединений устанавливают с помощью методов анализа органических соединений, включающих помимо такие физические методы, как ЯМР, масс-спектрометрия, ИК- , рентгеновский структурный анализ, и др.; развиваются также методы выделения, очистки и разделения органических веществ, например различные виды .

Классификация органических соединений

Основу органических соединений составляет незамкнутая (открытая) или замкнутая цепь углеродных атомов; одно или несколько звеньев цепи может быть заменено на атомы, отличные от углерода, - так называемые гетероатомы, чаще всего О, N, S. По структуре органических соединений подразделяют на - углеводороды и их производные, имеющие открытую углеродную цепь; карбоциклические соединения с замкнутой углеродной цепью (см. , ); . Углеводороды и их производные, не содержащие кратных связей, относятся к насыщенным соединениям, с - к ненасыщенным.

От каждого углеводорода путем замены водорода на различные функциональные группы может быть образован так называемый генетический ряд, например - - - - . В зависимости от типа функциональной группы органические соединения разделяются на классы: RH (функциональная группа отсутствует), их галогензамещенные RHal, ROH, RCHO, R 2 CO, RCOOH, первичные, вторичные и третичные RNH 2 , R 2 NH и R 3 N, нитросоединения RNO 2 ; (меркаптаны) RSH, сульфиды R 2 S и др. К функциональным группам относят также кратные углерод-углеродные связи. Группы органических соединений однотипной структуры с одинаковыми функциональными группами, отличающимися друг от друга по количеству групп СН 2 в углеродной цепи, составляют .

Соединения, в молекулах которых кроме С и Н и атомов-органогенов (Hal, О, N, S) содержатся атомы других элементов, образующих связи с углеродом, относятся к (см., например, ). О правилах наименования органических соединений см. в статье .

История развития органической химии

Истоки органической химии восходят к глубокой древности (уже тогда знали о спиртовом и уксуснокислом , крашении и ). Однако в средние века (период алхимии) были известны лишь немногие индивидуальные органические вещества. Все исследования этого периода сводились главным образом к операциям, при помощи которых, как тогда думали, одни простые вещества можно превратить в другие. Начиная с 16 в. (период ятрохимии) исследования были направлены в основном на выделение и использование различных лекарственных веществ: был выделен из растений ряд , приготовлен , сухой получены древесный (метиловый) спирт и уксусная кислота, из винного камня - винная кислота, перегонкой свинцового сахара - уксусная кислота, перегонкой - . Большая роль в становлении органической химии принадлежат А.Лавуазье, который разработал основные количественные методы определения состава химических соединений.

Идея неразрывной связи химической и физической свойств молекулы с ее строением, идея единственности этого строения впервые была высказана Бутлеровым (1861), который создал классическую теорию химического строения (атомы в молекулах соединяются согласно их валентностям, химические и физические свойства соединений определяются природой и числом входящих в их состав атомов, а также типом связей и взаимным влиянием непосредственно несвязанных атомов). Теория химического строения определила дальнейшее бурное развитие органической химии : в 1865 Кекуле предложил формулу , позднее высказал идею об осцилляции связей; В.В.Марковников и А.М.Зайцев сформулировали ряд правил, впервые связавших направление химической реакции с химическим строением вступающего в реакцию вещества. Экспериментальные данные И.Вислиценуса (1873) об идентичности структурных формул (+)-молочной кислоты (из кислого молока) и (±)-молочной кислоты послужили толчком для создания стереохимической теории (Я.Вант-Гофф и Ж.Ле Бель, 1874), в которой постулировалось тетраэдрическое строение фрагмента с четырехвалентным атомом углерода, что в случае четырех различных заместителей предсказывало существование пространственно-зеркальных изомеров; для соединений с двойной связью (тетраэдры соединяются по ребру) - наличие геометрической изомерии. На этой основе возникла - наука о трехмерной ориентации в молекулах и вытекающих отсюда следствиях, касающихся свойств соединений (см. также , ).

Работами Байера, К.Лаара, Л.Клайзена, Л.Кнорра развиты представления о - подвижной изомерии. Все эти теоретические представления способствовали мощному развитию синтетической химии. К концу 19 в. были получены все важнейшие представители углеводородов, спиртов, альдегидов и кетонов, карбоновых кислот, галогено- и нитропроизводных, азот- и серосодержащих структур, гетероциклов ароматической природы. Разработаны методы получения , и (А.Е.Фаворский). Открыты многочисленные реакции (Ш.Вюрц, А.П.Бородин, У.Перкин, Клайзен, А.Михаэль, Ш.Фридель, Дж.Крафтс, Э.Кнёвенагель и др.). Исключительные успехи были достигнуты Э.Г.Фишером в изучении углеводов, белков и пуринов, в использовании в органическом синтезе (1894), им же был осуществлен синтез полипептидов. Основой промышленности душистых веществ становятся работы О.Валлаха по терпенов. Выдающимися даже для нашего времени являются пионерские работы Р.Вильштеттера [установление структуры кокаина (1897) и хлорофилла (1907-11)]. Фундаментальный вклад в развитие органического синтеза был внесен В.Гриньяром (1900-20) и Н.Д.Зелинским (1910) - создание исключительно плодотворного метода синтеза магнийорганических соединений и открытие каталитических превращений углеводородов; последнее сыграло выдающуюся роль в развитии нефти. Химия свободных радикалов началась с работ М.Гомберга (1900), открывшим три-фенилметильный радикал, и была продолжена работами А.Е.Чичибабина, Г.Виланда и Ш.Гольдшмидта.

Разработка Ф.Преглем в начале 20 в. методов микроанализа органических веществ способствовала дальнейшему быстрому развитию химии природных соединений, что ознаменовалось работами Виланда (1910) по установлению природы желчных кислот, А.Виндауса (1913-15) - природы холестерина, работами Г.Фишера (1927-29) по синтезу таких ключевых соединений, как порфирин, билирубин и гемин, У.Хоуорса (Хеуорс) - по установлению структуры углеводов, синтезу витамина С.П.Каррера, Р.Куна (1911-39) - по получению каротиноидов и В 2 , В 6 , Е и К; химия алкалоидов, половых гормонов, терпенов была создана работами А.Бутенандта (1929-61), Л.Ружички (1920-24), А.П.Орехова и Р.Робинсона.

К середине 20 в. органический синтез претерпевает бурное развитие. Это определялось открытием таких основополагающих процессов, как получение олефинов с использованием илидов (Г.Виттиг, 1954), (О.Дильс, К.Альдер, 1928), гидроборирование непредельных соединений (Г.Браун, 1959), синтез нуклеотидов и синтез гена (А.Тодд, X.Корана). Не менее значительны успехи в химии металлоорганических соединений (А.Н.Несмеянов, Г.А.Разуваев). В 1951 был осуществлен синтез ферроцена, установление "сэндвичевой" структуры которого Р.Вудвордом и Дж.Уилкинсоном положило начало химии металлоценовых соединений и вообще химии органических соединений переходных металлов. В 1955 Э.О.Фишер синтезировал дибензолхром и разработал метод синтеза ареновых производных переходных металлов.

В 20-30-е гг. А.Е.Арбузов создает основы химии фосфорорганических соединений, что впоследствии привело к открытию новых типов физиологически активных соединений, комплексонов и др.

В 60-е гг. Г. Шилл осуществил синтез таких "неклассических" соединений, как катенаны и ротаксаны. В 60-80-е гг. Ч.Педерсен, Д.Крам и Ж.М.Лен разрабатывают химию краун-эфиров, криптандов и других родственных структур, способных образовывать прочные молекулярные комплексы, и тем самым подходят к важнейшей проблеме "молекулярного узнавания".

Строение органических соединений

Для органических соединений характерны неполярные ковалентные связи С-С и полярные ковалентные связи С-О, С-N, С-Hal, С-металл и т.д. Образование ковалентных связей было объяснено на основании развитых Г.Льюисом и В.Косселем (1916) предположений о важной роли электронных образований - октетов и дублетов. Молекула устойчива, если валентная оболочка таких элементов, как С, N, О, Hal, содержит 8 электронов (правило октета), а валентная оболочка водорода - 2 электрона. Химическая связь образуется обобществленной парой электронов различных атомов (простая связь). Двойные и тройные связи образуются соответственно двумя и тремя такими парами. Электроотрицательные атомы (F, О, N) используют для связи с углеродом не все свои валентные электроны; "неиспользованные" электроны образуют неподеленные (свободные) электронные пары. Полярность и поляризуемость ковалентных связей в органических соединений в электронной теории Льюиса-Косселя объясняется смещением электронных пар от менее электроотрицательного к более электроотрицательному атому, что находит выражение в и .

Признание ключевой роли электронных пар сыграло важную роль в классификации органических соединений, которые в случае реагентов с четным числом валентных электронов были разделены на нуклеофильные и электрофильные, а реакции частиц с нечетным числом валентных электронов назвали радикальными.

Классическая теория химического строения и первоначальные электронные представления оказались не в состоянии удовлетворительно описать на языке структурных формул строение многих соединений, например ароматических. Современная теория связи в органических соединений основана главным образом на понятии орбиталей и использует . Интенсивно развиваются квантовохимические методы, объективность которых определяется тем, что в их основе лежит аппарат квантовой механики, единственно пригодный для изучения явлений микромира. Методы молекулярных орбиталей орбиталей в органической химии развивались от простого метода Хюккеля к , и др. Широко используются представления о . Этап проникновения орбитальных концепций в органическую химию открыла Л.Полинга (1931-33) и далее работы К.Фукуи, Вудворда и Р.Хофмана о роли граничных орбиталей в определении направления химической реакции. Теория резонанса до сих пор широко используется в органической химии как метод описания строения одной молекулы набором канонических структур с одинаковым положением ядер, но с разным распределением электронов.

Общая характеристика реакций органических соединений

Реакции органических соединений имеют некоторые специфические особенности. В реакциях неорганических соединений обычно участвуют ионы; эти реакции протекают очень быстро, иногда мгновенно при нормальной температуре. В реакциях органических соединений обычно участвуют молекулы; при этом одни ковалентные связи разрываются, а другие образуются. Такие реакции протекают медленнее ионных (например, десятки часов), и для их ускорения часто требуется повысить температуру или добавить катализатор. Наиболее часто используют в качестве катализаторов кислоты и основания. Обычно протекает не одна, а несколько реакций, так что выход нужного продукта очень часто составляет менее 50%. В связи с этим в органической химии употребляют не химические уравнения, а схемы реакций без указания стехиометрических соотношений.

Реакции органических соединений могут протекать очень сложным образом и вовсе не обязательно соответствовать простейшей относительной записи. Как правило, простая стехиометрическая реакция на самом деле происходит в несколько последовательных стадий. В качестве промежуточных соединений (интермедиатов) в многостадийных процессах могут возникать карбкатионы R + , карбанионы R - , свободные радикалы , карбены: СХ 2 , катион-радикалы (например, ), анион-радикалы (например, Аr ) и другие нестабильные частицы, живущие доли секунды. Подробное описание всех изменений, которые происходят на молекулярном уровне в процессе превращения реагентов в продукты, называется механизмом реакции.

Исследование влияния строения органических соединений на механизм их реакций изучает физическая органическая химия , основы которой заложили К.Инголд, Робинсон и Л.Гаммет (1930-е гг.).

Реакции органических соединений могут классифицированы в зависимости от способа разрыва и образования связей, метода возбуждения реакции, ее молекулярности и др. (см. ).

Взаимодействие между реагирующими молекулами с использованием представлений о молекулярных орбиталях описывается примерно так же, как взаимодействие между атомами при образовании молекул. Широкое распространение для этой цели получил метод возмущений молекулярных орбиталей, на основе которого можно предсказать направление (региохимию) и стереохимический результат реакции, а также саму возможность ее осуществления в данных условиях. Использование (К.Фукуи, 1952) послужило мощным стимулом к сближению экспериментальной органической химии с квантовой химией. Подлинным триумфом применения метода молекулярных орбиталей в органической химии явилось опубликование в 1965 правил Вудворда-Хофмана, на основе которых можно легко предсказать направление перициклических реакций и условия их проведения, необходимые для получения желаемого стереохимического результата (см. , ).

Развитие органической химии в настоящее время достигло уровня, позволяющего начать решение такой основополагающей проблемы органической химии , как проблема количественного соотношения структуры вещества и его свойства, в качестве которого может выступать любое физическое свойство (например, температура плавления), биологическая активность любого строго заданного типа (например, пестицидная) и др. Решение задач такого типа осуществляется с использованием математических методов.

Возникновение органических соединений

Большинство органических соединений в природе образуется в процессе фотосинтеза из диоксида и под действием солнечного излучения, поглощаемого хлорофиллом в зеленых растениях. Однако органические соединения должны были существовать на земле и до возникновения жизни, которая не могла появиться без них. Первичная земная атмосфера около 2 млрд. лет назад имела восстановительные свойства, т.к. в ней не было кислорода, а содержались прежде всего водород и вода, а также СО, азот, аммиак и метан.

В условиях сильного радиоактивного излучения земных минералов и интенсивных атмосферных разрядов в атмосфере протекал абиотический синтез аминокислот по схеме:

CH 4 + H 2 O + NH 3 Аминокислоты

Возможность такой реакции в настоящее время доказана лабораторными опытами. Аминокислоты (из которых состоят белки) накапливались в океане вместе с другими веществами и постепенно превращались во все более сложные органические вещества, пока, наконец, не появилась возможность создания живой клетки.

Лит.: Чичибабин А.Е., Основные начала органической химии, 6 изд., т. 1-2, М., 1954-58; Каррер П., Курс органической химии, пер. с нем., 2 над., Л., 1962, Ингольд К., Теоретические основы органической химии, 2 изд., пер. с англ., М., 1973; Быков Г.В., История органической химии. Структурная теория, физическая органическая химия, расчетные методы, М., 1976; Дьюар М., Догерти Р., Теория возмущений молекулярных орбиталей в органической химии, пер. с англ., М., 1977; Быков Г.В., История органической химии. Открытие важнейших органических соединении. М., 1978; Общая органическая химия, под ред. Д.Бартона и У.Д.Оллнса, пер. с англ., т. 1-12, М., 1981-88; Терней А., Современная органическая химия, пер. с англ., т. 1-12, М., 1981; Марч Д., Органическая химия. Реакции, механизмы и структура, пер. с англ., т. 1-4. М., 1987-88; Beilsteins Handbuch der organischen Chemie, 4 Aufl., bearb. von B.Prager , Bd 1-31, В., 1918-40 (с 1928 г. изд. доп. тт.); Houben-Weyl, Methoden der organischen Chemie, 4 Aufl., Bd 1 20, Stuttg., 1952-88.

Химия. Самоучитель. Френкель Е.Н.

М.: 201 7. - 3 51 с.

Самоучитель основан на методике, которую автор с успехом использует более 20 лет. С её помощью множество школьников смогли поступить на химические факультеты и в медицинские вузы. Эта книга - именно Самоучитель, а не Учебник. Вы не столкнётесь здесь с простым описанием научных фактов и свойств веществ. Материал структурирован таким образом, что, встретившись со сложными вопросами, которые вызывают затруднения, вы сразу же найдёте пояснение автора. В конце каждой главы приводятся проверочные задания и упражнения для закрепления материала. Любознательному читателю, который просто хочет расширить свой кругозор, Самоучитель даст возможность освоить этот предмет «с нуля». Прочитав его, вы не сможете не влюбиться в эту интереснейшую науку - химию!

Формат: pdf

Размер: 2,7 Мб

Смотреть, скачать: drive.google

Оглавление
От автора 7
ЧАСТЬ 1. ЭЛЕМЕНТЫ ОБЩЕЙ ХИМИИ 9
Глава 1. Основные понятия и законы предмета «Химия» 9
1.1. Простейшие понятия: вещество, молекула, атом, химический элемент 9
1.2. Простые и сложные вещества. Валентность 13
1.3. Уравнения химических реакций 17
Глава 2. Основные классы неорганических соединений 23
2.1. Оксиды 23
2.2. Кислоты 32
2.3. Основания 38
2.4. Соли 44
Глава 3. Элементарные сведения о строении атома 55
3.1. Структура Периодической системы Менделеева 55
3.2. Ядро атома. Изотопы 57
3.3. Распределение электронов в поле ядра атома 60
3.4. Строение атома и свойства элементов 65
Глава 4. Понятие о химической связи 73
4.1. Ионная связь 73
4.2. Ковалентная связь 75
4.3. Химическая связь и агрегатные состояния вещества. Кристаллические решётки 80
Глава 5. Скорость химической реакции 87
5.1. Зависимость скорости химической реакции от различных факторов 87
5.2. Обратимость химических процессов. Принцип Ле-Шателье 95
Глава 6. Растворы 101
6.1. Понятие о растворах 101
6.2. Электролитическая диссоциация 105
6.3. Ионно-молекулярные уравнения реакций 111
6.4. Понятие о рН (водородном показателе) 113
6.5. Гидролиз солей 116
Глава 7. Понятие об окислительно-восстановительных реакциях123
ЧАСТЬ 2. ЭЛЕМЕНТЫ НЕОРГАНИЧЕСКОЙ ХИМИИ 130
Глава 8. Общие свойства металлов 130
8.1. Внутреннее строение и физические свойства металлов 131
8.2. Сплавы 133
8.3. Химические свойства металлов 135
8.4. Коррозия металлов 139
Глава 9. Щелочные и щёлочноземельные металлы 142
9.1. Щелочные металлы 142
9.2. Щелочноземельные металлы 145
Глава 10. Алюминий 153
Глава 11. Железо 158
11.1. Свойства железа и его соединений 158
11.2. Получение железа (чугуна и стали) 160
Глава 12. Водород и кислород 163
12.1. Водород 163
12.2. Кислород 165
12.3. Вода 166
Глава 13. Углерод и кремний 170
13.1. Строение атома и свойства углерода 170
13.2. Свойства соединений углерода 173
13.3. Строение атома и свойства кремния 176
13.4. Кремниевая кислота и силикаты 178
Глава 14. Азот и фосфор 182
14.1. Строение атома и свойства азота 182
14.2. Аммиак и соли аммония 184
14.3. Азотная кислота и её соли 187
14.4. Строение атома и свойства фосфора 189
14.5. Свойства и значение соединений фосфора 191
Глава 15. Сера 195
15.1. Строение атома и свойства серы 195
15.2. Сероводород 196
15.3. Сернистый газ и сернистая кислота 197
15.4. Серный ангидрид и серная кислота 198
Глава 16. Галогены 202
16.1. Строение атома и свойства галогенов 202
16.2. Соляная кислота 205
РАЗДЕЛ 3. ЭЛЕМЕНТЫ ОРГАНИЧЕСКОЙ ХИМИИ 209
Глава 17. Основные понятия органической химии 210
17.1. Предмет органической химии. Теория строения органических веществ 210
17.2. Особенности строения органических соединений 212
17.3. Классификация органических соединений 213
17.4. Формулы органических соединений 214
17.5. Изомерия 215
17.6. Гомологи 217
17.7. Названия углеводородов. Правила международной номенклатуры 218
Глава 18. Алканы 225
18.1. Понятие об алканах 225
18.2. Гомологический ряд, номенклатура, изомерия 225
18.3. Строение молекул 226
18.4. Свойства алканов 226
18.5. Получение и применение алканов 229
Глава 19. Алкены 232
19.1. Гомологический ряд, номенклатура, изомерия 232
19.2. Строение молекул 234
19.3. Свойства алкенов 234
19.4. Получение и применение алкенов 238
19.5. Понятие об алкадиенах (диены) 239
Глава 20. Алкины 244
20.1. Определение. Гомологический ряд, номенклатура, изомерия 244
20.2. Строение молекул 245
20.3. Свойства алкинов 246
20.4. Получение и применение ацетилена 248
Глава 21. Циклические углеводороды. Арены 251
21.1. Понятие о циклических углеводородах. Циклоалканы 251
21.2. Понятие об ароматических углеводородах 252
21.3. История открытия бензола. Строение молекулы 253
21.3. Гомологический ряд, номенклатура, изомерия 255
21.4. Свойства бензола 256
21.5. Свойства гомологов бензола 259
21.6. Получение бензола и его гомологов 261
Глава 22. Спирты 263
22.1. Определение 263
22.2. Гомологический ряд, номенклатура, изомерия 264
22.3. Строение молекул 265
22.4. Свойства одноатомных спиртов 266
22.5. Получение и применение спиртов (на примере этилового спирта) 268
22.6. Многоатомные спирты 269
22.7. Понятие о фенолах 271
Глава 23. Альдегиды 276
23.1. Определение. Гомологический ряд, номенклатура, изомерия 276
23.2. Строение молекул 277
23.3. Свойства альдегидов 278
23.4. Получение и применение альдегидов на примере уксусного альдегида 280
Глава 24. Карбоновые кислоты 282
24.1. Определение 282
24.2. Гомологический ряд, номенклатура, изомерия 283
24.3. Строение молекул 284
24.4. Свойства кислот 285
24.5. Получение и применение кислот 287
Глава 25. Сложные эфиры. Жиры 291
Глава 26. Углеводы 297
Глава 27. Азотсодержащие соединения 304
27.1. Амины 304
27.2. Аминокислоты 306
27.3. Белки 308
Глава 28. Понятие о полимерах 313
ЧАСТЬ 4. РЕШЕНИЕ ЗАДАЧ 316
Глава 29. Основные расчётные понятия 317
Глава 30. Задачи, решаемые по стандартным формулам 320
30.1. Задачи по теме «Газы» 320
30.2. Задачи по теме «Способы выражения концентрации растворов» 324
Глава 31. Задачи, решаемые по уравнениям реакций 330
31.1. Оформление расчётов по уравнениям реакций 330
31.2. Задачи по теме «Количественный состав смесей» 333
31.3. Задачи на «избыток-недостаток» 337
31.4. Задачи на установление формулы вещества 342
31.5. Задачи, в которых учитывается «выход» полученного вещества 349