Структурная молекула днк. Молекула ДНК человека

Для детального понимания сути метода ПЦР-диагностики необходимо совершить небольшой экскурс в школьный курс биологии.

Еще из школьных учебников мы знаем, что дезоксирибонуклеиновая кислота (ДНК) — универсальный носитель генетической информации и наследственных признаков у всех существующих на Земле организмов. Исключение составляют только некоторые микроорганизмы, например, вирусы — универсальным носителем генетической информации у них является РНК - одноцепочечная рибонуклеиновая кислота.

Строение ДНК-молекулы

Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.

ДНК представляет собой двойную нить, скрученную в спираль. Каждая нить состоит из «кирпичиков» — из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3’-гидроксильной (3’-ОН) и 5’-фосфатной группами (5’-РО3). Это свойство обуславливает наличие полярности в ДНК, т. е. противоположной направленности, а именно 5’- и 3’-концов: 5’-концу одной нити соответствует 3’-конец второй нити.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Структура ДНК

Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Синтез ДНК. Репликация

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.

В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее - комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:

  • Расплетение спирали ДНК и расхождение нитей
  • Присоединение праймеров
  • Образование новой цепи ДНК дочерней нити

В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.

Функции ДНК

Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.

Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.

Самовоспроизведение генетического материала. Репликация.

Принципы записи генетической информации. Генетический код и его свойства.

Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек в строго определенной последовательности. Эта последовательность определяет строение белка, а следоваетльно и его свойства. Набор аминокислот универсален почти для всех живых организмов.

Свойства ген. кода:

Триплетность- сочетание 3-х нуклеотидов

Непрерывность- между триплетами нет знаков препинания, т.е. информация считывается непрерывно

Неперекрываемость- один и тот же нуклеотид не может одновременно входить в состав нескольких триплетов

Специфичность- определенный кодон соответствует только 1 аминокислоте

Вырожденность- одной и той же аминокислоте может соответствовать несколько кодонов

Универсальность- генетический код работает одинаково в организмах разного уровня сложности

Помехоустойчивость

В процессе репликации генетического материала водородные связи между азотистыми основаниями разрываются, и из двойной спирали образуется две нити ДНК. Каждая из них становится матрицей для синтеза другой комплементарной нити ДНК. Последняя, через водородную связь, соединяется с матричной ДНК. Итак, любая дочерняя молекула ДНК состоит из одной старой и одной новой полинуклеотидной цепи. В результате дочерние клетки получают такую же генетическую информацию, как и у родительских клеток. Поддержание такой ситуации обеспечивается механизмом самокоррекции, осуществляемым ДНК-полимеразой. Способность генетического материала, ДНК, к самовоспроизведению (репликации) лежит в основе размножения живых организмов, передачи наследственных свойств из поколения в поколение и развития многоклеточного организма из зиготы.

Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называются генными мутациями.

Изменения структуры ДНК можно разделить на 3 группы: 1. Замена одних оснований другими.

2. сдвиг рамки считывания при изменении количества нуклеотидных пар в составе гена.

3. изменение порядка нуклеотидных последовательностей в пределах гена.

1. Замена одних оснований другими. Могут возникать случайно или под влиянием конкретных химических агентов. Если измененная форма основания остается незамеченной во время репарации, то при ближайшем цикле репликации она может присоединить к себе другой нуклеотид.



Другой причиной может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего измененную форму основания или его аналог. Если эта ошибка остается незамеченной во время репарации, то измененное основание включается в процесс репликации что приводит к замене одной пары на другую.

Вследствие образуется новый триплет в ДНК. Если этот триплет кодирует ту же аминокислоту, то изменения не отразятся на структуре пептида (вырожденность генетического кода). Если вновь возникший триплет кодирует другую аминокислоту, изменяется структура пептидной цепи и свойства белка.

2. сдвиг рамки считывания. Эти мутации происходят из-за выпадения (делеция) или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Причиной может быть воздействие на генетический материал некоторых химических веществ (акридиновых соединений). Большое число мутаций происходит вследствие включения в ДНК подвижных генетических элементов – транспозонов. Так же причиной могут послужить ошибки при рекомбинации при неравноценном внутригенном кроссинговере.

При таких мутациях изменяется смысл биологической информации, записанной в данной ДНК.

3. изменение порядка нуклеотидных последовательностей. Данный тип мутаций происходит вследствие поворота участка ДНК на 180ᵒ (инверсия). Это происходит из-за того что молекула ДНК образует петлю, в пределах которой репликация идет в неправильном направлении. В пределах инвертированного участка нарушается считывание информации и нарушается аминокислотная последовательность белка.

Причины: -неравный кроссинговер между гомологичными хромосомами

Внутрихромосомный кроссинговер

Разрывы хромосом

Разрывы с последующим соединением элементов хромосом

Копирование гена и его перенос в другой участок хромосомы

Хромосомы. Указать, что хромосомы состоят из ДНК, которая окружена белками двух типов: гистоновыми (основными) и негистоновыми (кислыми) . Отметить, что хромосомы могут находиться в двух структурно-функциональных состояниях: спирализованном и деспирализованном. Знать, какое из этих двух состояний хромосомы является рабочим и что это означает. Указать, в какой период жизни клетки хромосомы спирализованы и хорошо видны под микроскопом. Знать строение хромосомы, виды хромосом, которые различаются по месту расположения первичной перетяжки.

Организмы большинства живых существ имеют клеточное строение. В процессе эволюции органического мира в качестве элементарной системы, в которой возможно проявление всех закономерностей живого, была отобрана клетка. Организмы, имеющие клеточное строение, делятся на доядерные, не имеющие типичного ядра (или прокариоты) , в обладающие типичным ядром (или эукариоты) . Указать, какие организмы относятся к прокариотам, какие к эукариотам.

Для понимания организации биологической системы необходимо знать молекулярный состав клетки. По содержанию элементы, входящие в состав клетки, делятся на три группы: макроэлементы, микроэлементы и ультрамикроэлементы. Привести примеры элементов, входящих в состав каждой группы, охарактеризовать роль основных неорганических составляющих в жизнедеятельности клетки. Химические компоненты живого делятся на неорганические (вода, минеральные соли) и органические (белки, углеводы, липиды, нуклеиновые кислоты) . За небольшим исключением (кость и эмаль зубов) вода является преобладающим компонентом клеток. Знать свойства воды, в каких формах вода находится в клетке, охарактеризовать биологическое значение воды. По содержанию из органических веществ в клетке первое место занимают белки. Охарактеризовать состав белков, пространственную организацию белков (первичная, вторичная, третичная, четвертичная структуры) , роль белков в организме. Углеводы делятся на 3 класса: моносахариды, дисахариды и полисахариды. Знать химический состав и критерии классификации углеводов. Привести примеры важнейших представителей класса и охарактеризовать их роль в жизнедеятельности клетки. Наибольшим химическим разнообразием характеризуются липиды. Термин "липиды" объединяет жиры и жироподобные вещества - липоиды. Жиры - это сложные эфиры жирных кислот и какого-либо спирта. Знать химический состав липидов и липоидов. Подчеркнуть основные функции: трофическую, энергетическую, а также другие функции, которые необходимо охарактеризовать. Энергия, освобождающаяся при распаде органических веществ, используется для работы в клетках не сразу, а сначала запасается в форме высокоэнергетического промежуточного соединения - аденозинтрифосфата (АТФ) . Знать химический состав АТФ. Раскрыть, что представляет собой соединения АМФ и АДФ. Раскрыть понятие "макроэргическая связь". Указать, при каких процессах образуется АДФ и АМФ, и каким образом происходит образование АТФ, какова энергетическая ценность этих процессов. Привести примеры физиологических процессов, требующих больших затрат энергии.

МОСКВА, 25 апр — РИА Новости, Татьяна Пичугина. Ровно 65 лет назад британские ученые Джеймс Уотсон и Фрэнсис Крик опубликовали статью о расшифровке структуры ДНК, заложив основы новой науки — молекулярной биологии. Это открытие изменило очень многое в жизни человечества. РИА Новости рассказывает о свойствах молекулы ДНК и о том, почему она так важна.

Во второй половине XIX века биология была совсем молодой наукой. Ученые только приступали к исследованию клетки, а представления о наследственности, хотя и были уже сформулированы Грегором Менделем, не получили широкого признания.

Весной 1868 года молодой швейцарский врач Фридрих Мишер приехал в Университет города Тюбингена (Германия), чтобы заняться научной работой. Он намеревался узнать, из каких веществ состоит клетка. Для экспериментов выбрал лейкоциты, которые легко получить из гноя.

Отделяя ядро от протоплазмы, белков и жиров, Мишер обнаружил соединение с большим содержанием фосфора. Он назвал эту молекулу нуклеином ("нуклеус" на латыни — ядро).

Это соединение проявляло кислотные свойства, поэтому возник термин "нуклеиновая кислота". Его приставка "дезоксирибо" означает, что молекула содержит H-группы и сахара. Потом выяснилось, что на самом деле это соль, но название менять не стали.

В начале XX века ученые уже знали, что нуклеин представляет собой полимер (то есть очень длинную гибкую молекулу из повторяющихся звеньев), звенья сложены четырьмя азотистыми основаниями (аденином, тимином, гуанином и цитозином), а нуклеин содержится в хромосомах — компактных структурах, которые возникают в делящихся клетках. Их способность передавать наследственные признаки продемонстрировал американский генетик Томас Морган в опытах на дрозофилах.

Модель, объяснившая гены

А вот что делает в ядре клетки дезоксирибонуклеиновая кислота, сокращенно ДНК, долго не понимали. Считалось, что она играет какую-то структурную роль в хромосомах. Единицам наследственности — генам — приписывали белковую природу. Прорыв совершил американский исследователь Освальд Эвери, опытным путем доказавший, что генетический материал передается от бактерии к бактерии посредством ДНК.

Стало ясно, что ДНК нужно изучать. Но как? В то время ученым был доступен только рентген. Чтобы просвечивать им биологические молекулы, их приходилось кристаллизовать, а это сложно. Расшифровкой структуры белковых молекул по рентгенограммам занимались в Кавендишской лаборатории (Кембридж, Великобритания). Работавшие там молодые исследователи Джеймс Уотсон и Френсис Крик не располагали собственными экспериментальными данными по ДНК, поэтому они воспользовались рентгенограммами коллег из Королевского колледжа Мориса Уилкинса и Розалинды Франклин.

Уотсон и Крик предложили модель структуры ДНК, точно соответствующую рентгенограммам: две параллельные цепочки закручены в правую спираль. Каждая цепочка складывается произвольным набором азотистых оснований, нанизанных на остов их сахаров и фосфатов, и удерживается водородными связями, протянутыми между основаниями. Причем аденин соединяется только с тимином, а гуанин — с цитозином. Это правило называют принципом комплементарности.

Модель Уотсона и Крика объясняла четыре главных функции ДНК: репликацию генетического материала, его специфику, хранение информации в молекуле и ее способность мутировать.

Ученые опубликовали свое открытие в журнале Nature 25 апреля 1953 года. Через десять лет им вместе с Морисом Уилкинсом присудили Нобелевскую премию по биологии (Розалинда Франклин скончалась в 1958 году от рака в возрасте 37 лет).

"Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике — открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК привело к рождению новой, молекулярной биологии", — пишет Максим Франк-Каменецкий, выдающийся генетик, исследователь ДНК, автор книги "Самая главная молекула".

Генетический код

Теперь оставалось узнать, как эта молекула действует. Было известно, что ДНК содержит инструкции для синтеза клеточных белков, которые выполняют всю работу в клетке. Белки — это полимеры, состоящие из повторяющихся наборов (последовательностей) аминокислот. Причем аминокислот — всего двадцать. Виды животных отличаются друг от друга набором белков в клетках, то есть разными последовательностями аминокислот. Генетика утверждала, что эти последовательности задаются генами, которые, как тогда считали, служат первокирпичиками жизни. Но что такое гены, никто в точности не представлял.

Ясность внес автор теории Большого взрыва физик Георгий Гамов, сотрудник Университета Джорджа Вашингтона (США). Основываясь на модели двухцепочечной спирали ДНК Уотсона и Крика, он предположил, что ген — это участок ДНК, то есть некая последовательность звеньев — нуклеотидов. Поскольку каждый нуклеотид — это одно из четырех азотистых оснований, то нужно просто выяснить, как четыре элемента кодируют двадцать. В этом состояла идея генетического кода.

К началу 1960-х установили, что белки синтезируются из аминокислот в рибосомах — своего рода "фабриках" внутри клетки. Чтобы приступить к синтезу белка, к ДНК приближается фермент, распознает определенный участок в начале гена, синтезирует копию гена в виде маленькой РНК (ее называют матричной), затем уже в рибосоме из аминокислот выращивается белок.

Выяснили также, что генетический код — трехбуквенный. Это значит, что одной аминокислоте соответствуют три нуклеотида. Единицу кода назвали кодоном. В рибосоме информация с мРНК считывается кодон за кодоном, последовательно. И каждому из них соответствует несколько аминокислот. Как же выглядит шифр?

На этот вопрос ответили Маршалл Ниренберг и Генрих Маттеи из США. В 1961 году они впервые доложили свои результаты на биохимическом конгрессе в Москве. К 1967-му генетический код полностью расшифровали. Он оказался универсальным для всех клеток всех организмов, что имело далеко идущие последствия для науки.

Открытие структуры ДНК и генетического кода полностью переориентировало биологические исследования. То, что у каждого индивида уникальная последовательность ДНК, кардинально изменило криминалистику. Расшифровка генома человека дала антропологам совершенно новый метод изучения эволюции нашего вида. Недавно изобретенный редактор ДНК CRISPR-Cas позволил сильно продвинуть вперед генную инженерию. По всей видимости, в этой молекуле хранится решение и самых злободневных проблем человечества: рака, генетических заболеваний, старения.