Относительная магнитная проницаемость среды таблица. Что такое магнитная проницаемость (мю)

Магнитное поле катушки определяется током и напряженность этого поля , а индукция поля . Т.е. индукция поля в вакууме пропорциональна величине тока. Если же магнитное поле создается в некой среде или веществе, то поле воздействует на вещество, а оно, в свою очередь, определенным образом изменяет магнитное поле.

Вещество, находящееся во внешнем магнитном поле, намагничивается и в нем возникает добавочное внутреннее магнитное поле. Оно связано с движением электронов по внутриатомным орбитам, а также вокруг собственной оси. Движение электронов и ядер атомов можно рассматривать как элементарные круговые токи.

Магнитные свойства элементарного кругового тока характеризуются магнитным моментом.

При отсутствии внешнего магнитного поля элементарные токи внутри вещества ориентированы беспорядочно (хаотически) и, поэтому общий или суммарный магнитный момент равен нулю и в окружающем пространстве магнитное поле элементарных внутренних токов не обнаруживается.

Влияние внешнего магнитного поля на элементарные токи в веществе состоит в том, что изменяется ориентация осей вращения заряженных частиц причем так, что их магнитные моменты оказываются направленными в одну сторону. (в сторону внешнего магнитного поля). Интенсивность и характер намагничивания у различных веществ в одинаковом внешнем магнитном поле значительно отличаются. Величину, характеризующую свойства среды и влияние среды на плотность магнитного поля, называют абсолютной магнитной проницаемостью или магнитной проницаемостью среды (μ с ) . Это есть отношение = . Измеряется [μ с ]=Гн/м.

Абсолютная магнитная проницаемость вакуума называется магнитной постоянной μ о =4π 10 -7 Гн/м.

Отношение абсолютной магнитной проницаемости к магнитной постоянной называют относительной магнитной проницаемостью μ c /μ 0 =μ. Т.е. относительная магнитная проницаемость – это величина, показывающая, во сколько раз абсолютная магнитная проницаемость среды больше или меньше абсолютной проницаемости вакуума. μ - величина безразмерная, изменяющаяся в широких пределах. Эта величина положена в основу деления всех материалов и сред на три группы.

Диамагнетики . У этих веществ μ < 1. К ним относятся - медь, серебро, цинк, ртуть, свинец, сера, хлор, вода и др. Например, у меди μ Cu = 0,999995. Эти вещества слабо взаимодействуют с магнитом.

Парамагнетики . У этих веществ μ > 1. К ним относятся – алюминий, магний, олово, платина, марганец, кислород, воздух и др. У воздуха = 1,0000031. . Эти вещества также, как и диамагнетики, слабо взаимодействуют с магнитом.

Для технических расчетов μ диамагнитных и парамагнитных тел принимается равной единице.

Ферромагнетики . Это особая группа веществ, играющих громадную роль в электротехнике. У этих веществ μ >> 1. К ним относятся железо, сталь, чугун, никель, кобальт, гадолиний и сплавы металлов. Эти вещества сильно притягиваются к магниту. У этих веществ μ = 600- 10 000. У некоторых сплавов μ достигает рекордных значений до 100 000. Следует отметить, что μ для ферромагнитных материалов непостоянна и зависит от напряженности магнитного поля, вида материала и температуры.

Большое значение µ в ферромагнетиках объясняется тем, что в них имеются области самопроизвольного намагничивания (домены), в пределах которых элементарные магнитные моменты направлены одинаково. Складываясь, они образуют общие магнитные моменты доменов.

В отсутствие магнитного поля магнитные моменты доменов ориентированы хаотически и суммарный магнитный момент тела или вещества равен нулю. Под действием внешнего поля магнитные моменты доменов ориентируются в одну сторону и образуют общий магнитный момент тела, направленный в ту же сторону, что и внешнее магнитное поле.

Эту важную особенность используют на практике, применяя ферромагнитные сердечники в катушках, что позволяет резко усилить магнитную индукцию и магнитный поток при тех же значениях токов и числа витков или, иначе говоря, сконцентрировать магнитное поле в относительно малом объеме.

Из многолетней технической практики нам известно, что индуктивность катушки сильно зависит от характеристик среды, где эта катушка находится. Если в катушку из медной проволоки, обладающую известной индуктивностью L0, добавить ферромагнитный сердечник, то при прочих прежних обстоятельствах токи самоиндукции (экстратоки замыкания и размыкания) в данной катушке многократно увеличатся, эксперимент это подтвердит, что и будет означать возросшую в несколько раз , которая теперь станет равна L.

Экспериментальное наблюдение

Допустим, что окружающая среда, вещество, заполняющее пространство внутри и вокруг описанной катушки, однородно, и порождаемое текущим по ее проводу током, локализовано только в этой обозначенной области, не выходя за ее границы.

Если катушка имеет тороидальную форму, форму замкнутого кольца, то данная среда вместе с полем окажется сосредоточена только внутри объема катушки, ибо снаружи тороида практически полностью магнитное поле отсутствует. Справедливо данное положение и для длинной катушки - соленоида, у которого все магнитные линии так же сосредоточены внутри - по оси.


Для примера допустим, что индуктивность некоторого контура или катушки без сердечника в вакууме равна L0. Тогда для такой же катушки, но уже в однородном веществе, которое заполняет пространство, где присутствуют магнитные силовые линии данной катушки, индуктивность пусть будет равна L. В этом случае получится, что отношение L/L0 – это есть ни что иное, как относительная магнитная проницаемость названного вещества (иногда говорят просто «магнитная проницаемость»).

Становится очевидно: магнитная проницаемость - это величина, которая характеризует магнитные свойства данного вещества. Она зачастую зависит от состояния вещества (и от условий окружающей среды, таких как например температура и давление) и от его рода.

Понимание термина


Введение термина «магнитная проницаемость», применительно к веществу, размещенному в поле магнитном, аналогично введению термина «диэлектрическая проницаемость» для вещества находящегося в поле электрическом.

Значение магнитной проницаемости, определяемое по приведенной выше формуле L/L0, может быть выражена и как отношение абсолютных магнитных проницаемостей данного вещества и абсолютной пустоты (вакуума).

Легко заметить: магнитная проницаемость относительная (она же - магнитная проницаемость) - это величина безразмерная. А вот абсолютная магнитная проницаемость - имеет размерность Гн/м, ту же самую, что у магнитной проницаемости (абсолютной!) вакуума (она же - магнитная постоянная).

Фактически видим, что среда (магнетик) влияет на индуктивность контура, и это однозначно свидетельствует о том, что изменение среды приводит к изменению магнитного потока Ф, пронизывающего контур, а значит и к изменению индукции В, применительно к любой точке магнитного поля.

Физический смысл данного наблюдения заключается в том, что при одном и том же токе катушки (при одной и той же магнитной напряженности H), индукция ее магнитного поля окажется в определенное количество раз больше (в некоторых случаях - меньше) в веществе с магнитной проницаемостью мю, чем в полном вакууме.

Это происходит потому, что , и сама начинает обладать магнитным полем. Вещества, способные таким образом намагничиваться, называют магнетиками.

Единица измерения абсолютной магнитной проницаемости - 1 Гн/м (генри на метр или ньютон на ампер в квадрате), то есть это магнитная проницаемость такой среды, где при напряженности Н магнитного поля, равной 1 А/м - возникает магнитная индукция величиной 1 Тл.

Физическая картина явления

Из вышеизложенного становится ясно, что различные вещества (магнетики) под действием магнитного поля контура с током намагничиваются, и в результате получается магнитное поле, являющееся суммой магнитных полей - магнитного поля от намагниченной среды плюс от контура с током, потому оно отличается по величине от поля только контура с током без среды. Причина намагничивания магнетиков кроется в существовании мельчайших токов внутри каждого их атома.

По значению магнитной проницаемости, вещества классифицируются на диамагнетики (меньше единицы - намагничиваются против приложенного поля), парамагнетики (больше единицы - намагничиваются по направлению приложенного поля) и ферромагнетики (сильно больше единицы - намагничиваются, и обладают намагниченностью после отключения приложенного магнитного поля).

Ферромагнетикам свойственен , поэтому понятие «магнитная проницаемость» в чистом виде к ферромагнетикам не применимо, но в некотором диапазоне намагничивания, в некотором приближении, можно выделить линейный участок кривой намагничивания, для которого получится оценить магнитную проницаемость.

У сверхпроводников магнитная проницаемость - 0 (поскольку магнитное поле полностью вытесняется из их объема), а абсолютная магнитная проницаемость воздуха почти равна мю вакуума (читай магнитной постоянной). У воздуха мю относительная чуть-чуть больше 1.

Диэлектрическая проницаемость веществ

Вещество

Вещество

Газы и водяной пар

Жидкости

Азот 1,0058 Глицерин 43
Водород 1,00026 Кислород жидкий (при t = -192,4 o C) 1,5
Воздух 1,00057 Масло трансформаторное 2,2
Вакуум 1,00000 Спирт 26
Водянной пар (при t=100 o C) 1,006 Эфир 4,3
Гелий 1,00007

Твердые тела

Кислород 1,00055 Алмаз 5,7
Углекислый газ 1,00099 Бумага парафинированная 2,2

Жидкости

Дерево сухое 2,2-3,7
Азот жидкий (при t = -198,4 o C) 1,4 Лед (при t = -10 o C) 70
Бензин 1,9-2,0 Парафин 1,9-2,2
Вода 81 Резина 3,0-6,0
Водород (при t= - 252,9 o C) 1,2 Слюда 5,7-7,2
Гелий жидкий (при t = - 269 o C) 1,05 Стекло 6,0-10,0
Титанат бария 1200
Фарфор 4,4-6,8
Янтарь 2,8

Примечание. Электрическая постоянная ԑ o (диэлектрическая проницаемость вакуума) равная: ԑ o = 1\4πс 2 * 10 7 Ф/м ≈ 8,85 * 10 -12 Ф/м

Магнитная проницаемость вещества

Примечание. Магнитная постоянная μ o (магнитная проницаемость вакуума) равна: μ o = 4π * 10 -7 Гн/м ≈ 1,257 * 10 -6 Гн/м

М агнитная проницаемость ферромагнетиков

В таблице приведены значения магнитной проницаемости для некоторых ферромагнетиков (веществ с μ > 1). Магнитная приницаемость для ферромагнетиков (железо, чугун, сталь, никель и др.) не постоянная. В таблице указаны максимальные значения.

1 Пермаллой-68 - сплав из 68% никеля и 325 железа; этот сплав применяют для изготовления сердечников трансформаторов.

Температура Кюри

Удельное электрическое сопротивление материалов

Сплавы высокого сопротивления

Название сплава

Удельное электрическое сопротивление мкОМ м

Состав сплава, %

Марганец

Другие элементы

Константан 0,50 54 45 1 -
Копель 0,47 56,5 43 0,05 -
Манганин 0,43 > 85 2-4 12 -
Нейзильбер 0,3 65 15 - 20 Zn
Никелин 0,4 68,5 30 1,5 -
Нихром 1,1 - > 60 < 4 30 < Cr ост. Fe
Фехраль 1,3 - - - 12-15 Cr 3-4 Al 80 < Fe

Температурные коэффициенты электрического сопротивления проводников

Проводник

Проводник

Алюминий Никель
Вольфрам Нихром
Железо Олово
Золото Платина
Константан Ртуть
Латунь Свинец
Магний Серебро
Манганин Сталь
Медь Фехраль
Нейзильбер Цинк
Никелин Чугун

Сверхпроводимость проводников

    Примечания.
  1. Сверхпроводимость обнаружена у более чем 25 металлических элементов и у большого числа сплавов и соединений.
  2. Сверхпроводником с наиболее высокой температурой перехода в сверхпроводящее состояние -23,2 К (-250,0 o C) - до недавного времени являлся германид ниобия (Nb 3 Ge). В конце 1986 г. был получен сверхпроводник с температурой перехода ≈ 30 К (≈ -243 o С). Сообщается о синтезе новых высокотемпературных сверхпроводников: керамик (изготовливается путем спекания оксидов бария, меди и лантана) с температурой перехода ≈ 90-120 К.

Удельное электрическое сопротивление некоторых полупроводников и диэлектриков

Вещество СтеклоТемпература, o С Удельное сопротивление
Ом м Ом мм2/м

Полупроводники

Антимонид индия 17 5,8 х 10 -5 58
Бор 27 1,7 х 10 4 1,7 х 10 10
Германий 27 0,47 4,7 х 10 5
Кремний 27 2,3 х 10 3 2,3 х 10 9
Cеленид свинца (II) (PbSe) 20 9,1 х 10 -6 9,1
Сульфид свинца (II) (PbS) 20 1,7 х 10 -5 0,17

Диэлектрики

Вода дистиллированная 20 10 3 -10 4 10 9 -10 10
Воздух 0 10 15 -10 18 10 21 -10 24
Воск пчелиный 20 10 13 10 19
Древесина сухая 20 10 9 -10 10 10 15 -10 16
Кварц 230 10 9 10 15
Масло трансформаторное 20 10 11 -10 13 10 16 -10 19
Парафин 20 10 14 10 20
Резина 20 10 11 -10 12 10 17 -10 18
Слюда 20 10 11 -10 15 10 17 -10 21
Стекло 20 10 9 -10 13 10 15 -10 19

Электрическое свойства пластмасс

Название пластмассы Диэлектрическая проницаемость
Гетинакс 4,5-8,0 10 9 -10 12
Капрон 3,6-5,0 10 10 -10 11
Лавсан 3,0-3,5 10 14 -10 16
Органическое стекло 3,5-3,9 10 11 -10 13
Пенопласт 1,0-1,3 ≈ 10 11
Полистирол 2,4-2,6 10 13 -10 15
Полихлорвинил 3,2-4,0 10 10 -10 12
Полиэтилен 2,2-2,4 ≈ 10 15
Стеклотекстолит 4,0-5,5 10 11 -10 12
Текстолит 6,0-8,0 10 7 -10 19
Целлулоид 4,1 10 9
Эбонит 2,7-3,5 10 12 -10 14

Удельное электрическое сопротивление электролитов (при t=18 o С и 10-процентной концентрации раствора)

Примчание. Удельноое сопротивление электролитов зависит от температуры и концентрации, т.е. от отношения массы растворенной кислоты, щелочи или соли к массе растворяющей воды. При указанной концентрации растворов увеличение температуры на 1 o С уменьшает удельное сопротивление раствора, взятого при 18 o С, на 0,012 гидроксида натрия, на 0,022 - для медного купороса, на 0,021 - для хлорида натрия, на 0,013 -для серной кислоты и на 0,003 - для 100 - процентной серной кислоты.

Удельное электрическое сопртивление жидкостей

Жидкость

Удельное электрическое сопротивление, Ом м

Жидкость

Удельное электрическое сопротивление, Ом м

Ацетон 8,3 х 10 4 Расплавленные соли:
Вода дистилированна 10 3 - 10 4 гидроксид калия (КОН; при t = 450 o C) 3,6 х 10 -3
Вода морская 0,3 гидроксид натрия (NaOH; при t = 320 o C) 4,8 х 10 -3
Вода речная 10-100 хлорид натрия (NaCI; при t = 900 o C) 2,6 х 10 -3
Воздух жидкий (при t = -196 o C) 10 16 сода (Na 2 CO 3 x10H 2 O; при t = 900 o C) 4,5 х 10 -3
Глицерин 1,6 х 10 5 Спирт 1,5 х 10 5
Керосин 10 10
Нафталин расплавленный (при (при t = 82 o C) 2,5 х 10 7

Магнитные свойства веществ

Подобно тому, как электрические свойства вещества характеризуются диэлектрической проницаемостью, магнитные свойства вещества характеризуются магнитной проницаемостью.

Благодаря тому, что все вещества, находящиеся в магнитном поле, создают собственное магнитное поле, вектор магнитной индукции в однородной среде отличается от вектора в той же точке пространства в отсутствие среды, т. е. в вакууме.

Отношение называется магнитной проницаемостью среды.

Итак, в однородной среде магнитная индукция равна:

Величина m у железа очень велика. В этом можно убедиться на опыте. Если вставить в длинную катушку железный сердечник, то магнитная ин­дукция, согласно формуле (12.1), увеличится в m раз. Сле­довательно, во столько же раз увеличится поток магнитной индукции. При размыкании цепи, питающей намагничи­вающую катушку постоянным током, во второй, небольшой катушке, намотанной поверх основной, возникает индукцион­ный ток, регистрируемый гальванометром (рис. 12.1).

Если в катушку вставлен железный сердечник, то отклоне­ние стрелки гальванометра при размыкании цепи будет в m раз больше. Измерения показывают, что магнитный поток при внесении в катушку железного сердечника может увеличиться в тысячи раз. Следовательно, магнитная проницаемость железа огромна.

Существует три основных класса веществ с резко разли­чающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

Ферромагнетики

Вещества, у которых, подобно железу, m >> 1, называются ферромагнетиками. Кроме железа, ферромагнетиками явля­ются кобальт и никель, а также ряд редкоземельных элемен­тов и многие сплавы. Важнейшее свойство ферромагнетиков – существование у них остаточного магнетизма. Ферромагнитное вещество может находиться в намагничен­ном состоянии и без внешнего намагничивающего поля.

Железный предмет (например, стержень), как известно, втя­гивается в магнитное поле, т. е. перемещается в область, где магнитная индукция больше. Соответственно, он притягивает­ся к магниту или электромагниту. Это происходит потому, что элементарные токи в железе ориентируются так, что направ­ление магнитной индукции их поля совпадает с направлением индукции намагничивающего поля. В результате железный стержень превращается в магнит, ближайший полюс которого противоположен полюсу электромагнита. Противоположные же полюса магнитов притягиваются (рис. 12.2).

Рис. 12.2

СТОП! Решите самостоятельно: А1–А3, В1, В3.

Парамагнетики

Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле. Эти вещества называются парамагнитными . К их числу относятся некоторые ме­таллы (алюминий, натрий, калий, марганец, платина и др.), кислород и многие другие элементы, а также различные рас­творы электролитов.

Так как парамагнетики втягиваются в поле, то линии ин­дукции создаваемого ими собственного магнитного поля и намагничивающего поля направлены одинаково, поэтому поле усиливается. Таким образом, у них m > 1. Но от единицы m от­личается крайне незначительно, всего на величину порядка 10 –5 ...10 –6 . Поэтому для наблюдения парамагнитных явлений требуются мощные магнитные поля.

Диамагнетики

Особый класс веществ представляют собой диамагне­тики , открытые Фарадеем. Они выталкиваются из магнит­ного поля. Если подвесить диамагнитный стерженек возле по­люса сильного электромагнита, то он будет отталкиваться от него. Следовательно, линии индукции созданного им поля на­правлены противоположно линиям индукции намагничиваю­щего поля, т. е. поле ослабляется (рис. 12.3). Соответственно у диамагнетиков m < 1, причем отличается от единицы на вели­чину порядка 10 –6 . Магнитные свойства у диамагнетиков вы­ражены слабее, чем у парамагнетиков.

Рис. 12.3

Рис. 12.4

К диамагнетикам относятся висмут, медь, сера, ртуть, хлор, инертные газы и практически все органические соеди­нения. Диамагнитным является пламя, например пламя све­чи (главным образом за счет углекислого газа). Поэтому пла­мя выталкивается из магнитного поля (рис. 12.4).