Углерод в органических соединениях проявляет свойства. Что такое углерод? Описание, свойства и формула углерода

Кратко рассказать о том, что такое углерод, невозможно. Ведь он - основа жизни. Данный элемент имеется во всех органических соединениях, и только он может формировать молекулы ДНК из миллионов атомов. Его свойства многочисленны, так что о нем стоит рассказать поподробней.

Формула, обозначения, особенности

Данный элемент, находящийся в таблице под порядковым номером шесть, обозначается символом «С». Электронная структурная формула углерода выглядит следующим образом: 1s 2 2s 2 2p 2 . Его масса - 12,0107 а.е.м. У этого вещества имеется:

  • Два неспаренных электрона в основном состоянии. Проявляет валентность II.
  • Четыре неспаренных электрона в возбужденном состоянии. Проявляет валентность IV.

Следует отметить, что определенная масса углерода содержится в земной коре. 0,023%, если быть точнее. Главным образом он накапливается в верхней части, в биосфере. Большая часть массы углерода литосферы накапливается в доломитах и известняках, в виде карбонатов.

Физические характеристики

Итак, что такое углерод? Это вещество, которое существует в огромном множестве аллотропных модификаций, и их физические свойства перечислять можно долго. А разнообразие веществ обуславливается способностью углерода к образованию химических связей отличающихся типов.

Что касательно свойств углерода, как простого вещества? Их можно обобщить следующим образом:

  • При нормальных условиях плотность составляет 2,25 г/см³.
  • Температура кипения равна 3506,85 °C.
  • Молярная теплоемкость - 8,54 Дж/(K.моль).
  • Критическая температура фазового перехода (когда газ не конденсируется ни при каком давлении) - 4130 К, 12 МПа.
  • Молярный объем 5,3 см³/моль.

Также стоит перечислить углеродные модификации.

Из кристаллических веществ самыми известными являются: алмаз, карбин, графит, наноалмаз, фуллерит, лонсдейлит, фуллерен, а также углеродные волокна.

К аморфным образованиям относится: древесный, ископаемый и активированный уголь, антрацит, кокс, стеклоуглерод, сажа, техуглерод и нанопена.

Но ничто из перечисленного не является чистой аллотропной формой обсуждаемого вещества. Это лишь химические соединения, в которых углерод содержится в высокой концентрации.

Структура

Интересно, что электронные орбитали атома углерода не одинаковы. Они имеют разную геометрию. Все зависит от степени гибридизации. Есть три наиболее часто встречающиеся геометрии:

  • Тетраэдрическая . Она образуется, когда происходит смешение трех р- и одного s-электронов. Такая геометрия атома углерода наблюдается у лонсдейлита и алмаза. Аналогичную структуру имеет метан и прочие углеводороды.
  • Тригональная . Данную геометрию образует смешение двух р- и одной s-электронной орбитали. Еще один р-элемент не принимает участия в гибридизации, но он задействован при образовании π-связи с прочими атомами. Эта структура свойственна фенолу, графиту и прочим модификациям.
  • Дигональная . Эта структура образуется вследствие смешения s- и р-электронов (по одному). Интересно, что выглядят электронные облака, как несимметричные гантели. Вытянуты они вдоль оного направления. Еще два р-электрона образуют пресловутые π-связи. Данная геометрия характерна для карбина.

Не так давно, в 2010 году, ученые из университета, который находится в Ноттингеме, открыли соединение, в котором сразу четыре атома оказались в одной плоскости. Его название - мономерный дилитио метандий.

Молекулы

О них стоит сказать в отдельности. Атомы обсуждаемого вещества могут соединяться, вследствие чего образуются сложные молекулы углерода. От насыщенных Na, С 2 и Н 2 , между которыми слишком слабое притяжение, их отличает склонность конденсироваться в твердое состояние. Молекулы углерода могут оставаться в газообразном состоянии, только если поддерживать высокую температуру. Иначе вещество мгновенно затвердеет.

Некоторое время тому назад в США, в Берклеевской национальной лаборатории, была синтезирована новая форма твердого углерода. Это - С36. И его молекулу образует 36 углеродных атомов. Вещество образуется вместе с фуллеренами С60. Происходит это между двумя электродами графита, в условиях пламени дугового разряда. Ученые предполагают, что молекулы нового вещества обладают интересными химико-электрическими свойствами, которые пока не изучены.

Графит

Теперь можно более подробно рассказать о самых известных модификациях такого вещества, как углерод.

Графит - это самородный минерал со слоистой структурой. Вот его особенности:

  • Он отлично проводит ток.
  • Является относительно мягким веществом из-за своей низкой твердости.
  • При нагревании в отсутствие воздуха проявляет устойчивость.
  • Не плавится.
  • На ощупь жирный, скользкий.
  • В природном графите содержится 10-12% примесей. Как правило, это окислы железа и глины.

Если говорить о химических свойствах, то стоит отметить, что с солями и щелочными металлами это вещество образует так называемые соединения включения. Еще графит при высокой температуре реагирует с кислородом, сгорая до углекислого газа. Но вот контакт с неокисляющими кислотами никакого результата за собой не влечет - это вещество в них просто не растворяется.

Применяют графит в самых разных сферах. Его используют при изготовлении футеровочных плит и плавильных тиглей, в производстве нагревательных элементов и электродов. Без участия графита невозможно получить синтетические алмазы. Также он играет роль замедлителя нейтронов в ядерных реакторах. И, конечно же, из него делают стержни для карандашей, мешая с каолином. И это лишь часть сфер, где он используется.

Алмаз

Это метастабильный минерал, который может существовать неограниченное количество времени, что в некоторой степени обусловлено прочностью и плотностью углерода. Алмаз является самым твердым веществом по шкале Мооса, он легко разрезает стекло.

У него высокая теплопроводность, дисперсия, показатель преломления. Он износостойкий, а чтобы заставить его плавиться, нужна температура в 4000 °C и давление около 11 ГПа. Его особенность - люминесценция, способность светиться разными цветами.

Это редкое, хоть и распространенное вещество. Возраст минералов, согласно данным определенных исследований, может колебаться от 100 миллионов до 2,5 миллиарда лет. Обнаружены алмазы внеземного происхождения, возможно, даже досолнечного.

Этот минерал нашел свое применение в ювелирном деле. Ограненный алмаз, именуемый бриллиантом, стоит дорого, но статус драгоценности и красота сделали его еще более популярным. Кстати, также это вещество используют при изготовлении резцов, сверл, ножей и т. д. Благодаря своей исключительной твердости, минерал применяют во многих производствах.

Карбин

В продолжение темы о том, что такое углерод, нужно пару слов сказать и о такой его модификации, как карбин. Он выглядит как черный мелкокристаллический порошок, обладает полупроводниковыми свойствами. Получен искусственным образом в начале 60-х годов советскими учеными.

Особенность данного вещества заключается в увеличивающейся под световым воздействием проводимости. Именно поэтому его стали применять в фотоэлементах.

Графен

Это первый в мире двумерный кристалл. У данной модификации большая механическая жесткость, чем у графита, и рекордно высокая теплопроводность, составляющая ~5.10 3 Вт.м −1 .К−. У носителей заряда графена высокая подвижность, именно поэтому вещество имеет перспективы в плане его использования в разных приложениях. Считается, что он может стать будущей основой наноэлектроники и даже заменить кремний в интегральных микросхемах.

Графен получают искусственно, в научных лабораториях. Для этого приходится прибегать к механическому отщеплению графитовых слоев от высокоориентированного вещества. Так получают образцы высокого качества с необходимой подвижностью носителей.

Его свойства изучены не полностью, но кое-что интересное ученые уже успели отметить. Например, в графене нет вингеровской кристаллизации. А в двойном слое вещества поведение электронов напоминает то, которое свойственно жидким кристаллам. Если соблюсти параметры скалывания на кристалле, удастся получить графеновую коробчатую наноструктуру.

Токсичность

Эту тему стоит отметить в заключение рассказа о том, что такое углерод. Дело в том, что это вещество выделяется в атмосферу вместе с выхлопными газами автомобилей. А еще при сжигании угля, подземной газификации и во многих других процессах.

Повышенное содержание этого вещества в воздухе приводит к увеличению численности заболеваний. В частности, это касается легких и верхних дыхательных путей. А токсическое действие обусловлено взаимодействием радиационного характера с β-частицами, которое ведет к тому, что химический состав молекулы меняется и свойства вещества - тоже.

УГЛЕРОД , С, химический элемент IV группы периодической системы, атомный вес 12,00, порядковый номер 6. До последнего времени углерод считался не имеющим изотопов; лишь недавно удалось с помощью особо чувствительных методов обнаружить существование изотопа С 13 . Углерод - один из важнейших элементов по распространенности, по многочисленности и разнообразию его соединений, по биологическому значению (как органоген), по обширности технического использования самого углерода и его соединений (как сырья и как источника энергии для промышленных и бытовых нужд) и наконец по своей роли в развитии химической науки. Углерод в свободном состоянии обнаруживает ярко выраженное явление аллотропии, известное уже более полутора веков, но до сих пор не вполне изученное как по причине чрезвычайной трудности получения углерода в химически чистом виде, так и потому, что большинство констант аллотропных модификаций углерода сильно меняется в зависимости от морфологических особенностей их структуры, обусловленных способом и условиями получения.

Углерод образует две кристаллические формы - алмаз и графит и кроме того известен в аморфном состоянии в виде т. н. аморфного угля . Индивидуальность последнего в результате недавних исследований оспаривалась: уголь отождествляли с графитом, рассматривая тот и другой как морфологические разновидности одной формы - «черного углерода», а разницу в их свойствах объясняли физической структурой и степенью дисперсности вещества. Однако в самое последнее время получены факты, подтверждающие существование угля как особой аллотропной формы (см. ниже).

Природные источники и запасы углерода . По распространенности в природе углерод занимает среди элементов 10-е место, составляя 0,013% атмосферы, 0,0025% гидросферы и около 0,35% всей массы земной коры. Большая часть углерода находится в форме кислородных соединений: в атмосферном воздухе содержится ~800 млрд. тонн углерода в виде двуокиси СО 2 ; в воде океанов и морей - до 50000 млрд. тонн углерода в виде СО 2 , иона угольной кислоты и бикарбонатов; в горных породах - нерастворимые карбонаты (кальция, магния и других металлов), причем на долю одного СаСО 3 приходится ~160·10 6 млрд. тонн углерода. Эти колоссальные запасы не представляют, однако, энергетической ценности; гораздо более ценными являются горючие углеродистые материалы - ископаемые угли, торф, затем нефть, углеводородные газы и другие природные битумы. Запас этих веществ в земной коре также довольно значителен: общая масса углерода в ископаемых углях достигает ~6000 млрд. тонн, в нефти ~10 млрд. тонн и т. д. В свободном состоянии углерод встречается довольно редко (алмаз и часть вещества графитов). Ископаемые угли почти или вовсе не содержат свободного углерода: они состоят гл. обр. из высокомолекулярных (полициклических) и весьма устойчивых соединений углерода с другими элементами (Н, О, N, S) еще очень мало изученных. Углеродистые соединения живой природы (биосферы земного шара), синтезируемые в растительных и животных клетках, отличаются чрезвычайным разнообразием свойств и количеств состава; наиболее распространенные в растительном мире вещества - клетчатка и лигнин - играют роль и в качестве энергетических ресурсов.

Углерод сохраняет постоянство распределения в природе благодаря непрерывному круговороту, цикл которого слагается из синтеза сложных органических веществ в растительных и животных клетках и из обратной дезагрегации этих веществ при их окислительном распаде (горение, гниение, дыхание), приводящем к образованию СО 2 , которая вновь используется растениями для синтеза. Общая схема этого круговорота м. б. представлена в следующем виде:

Получение углерода . Углеродистые соединения растительного и животного происхождения неустойчивы при высоких температурах и, будучи подвергнуты нагреванию не ниже 150-400°С без доступа воздуха, разлагаются, выделяя воду и летучие соединения углерода и оставляя твердый нелетучий остаток, богатый углеродом и обычно называемый углем . Этот пиролитический процесс носит название обугливания , или сухой перегонки , и широко применяется в технике. Высокотемпературный пиролиз ископаемых углей, нефти и торфа (при температуре 450-1150°С) приводит к выделению углерода в графитообразной форме (кокс, ретортный уголь). Чем выше температура обугливания исходных материалов, тем получаемый уголь или кокс ближе по составу к свободному углероду, а по свойствам - к графиту.

Аморфный же уголь, образующийся при температуре ниже 800°С, не м. б. рассматриваем как свободный углерод, ибо содержит значительные количества химически связанных других элементов, гл. обр. водорода и кислорода. Из технических продуктов к аморфному углю наиболее близки по свойствам активированный уголь и сажа. Наиболее чистый уголь м. б. получен обугливанием чистого сахара или пиперонала, специальной обработкой газовой сажи и т. п. Искусственный графит, полученный электротермическим путем, по составу представляет собою почти чистый углерод. Природный графит всегда бывает загрязнен минеральными примесями и кроме того содержит некоторое количество связанных водорода (Н) и кислорода (О); в относительно чистом состоянии он м. б. получен лишь после ряда специальных обработок: механического обогащения, промывки, обработки окислителями и прокаливания при высокой температуре до полного удаления летучих веществ. В технологии углерода никогда не имеют дела с совершенно чистым углеродом; это относится не только к натуральному углеродному сырью, но и к продуктам его обогащения, облагораживания и термического разложения (пиролиза). Ниже приведено содержание углерода в некоторых углеродистых материалах (в %):

Физические свойства углерода . Свободный углерод практически совершенно неплавок, нелетуч и при обыкновенной температуре нерастворим ни в одном из известных растворителей. Он растворяется только в некоторых расплавленных металлах, особенно при температуре, приближающихся к температуре кипения последних: в железе (до 5%), серебре (до 6%)| рутении (до 4%), кобальте, никеле , золоте и платине. При отсутствии кислорода углерод является наиболее жароупорным материалом; жидкое состояние для чистого углерода неизвестно, а превращение его в пар начинается лишь при температуре выше 3000°С. Поэтому определение свойств углерода производилось исключительно для твердого агрегатного состояния. Из модификаций углерода алмаз обладает наиболее постоянными физическими свойствами; свойства графита в различных его образцах (даже наиболее чистых) значительно варьируют; еще более непостоянны свойства аморфного угля. Важнейшие физические константы различных модификаций углерода сопоставлены в таблице.

Алмаз - типичный диэлектрик, в то время как графит и уголь обладают металлической электропроводностью. По абсолютной величине проводимость их меняется в очень широких пределах, но для углей она всегда ниже, чем для графитов; у графитов же приближается к проводимости настоящих металлов. Теплоемкость всех модификаций углерода при температуре >1000°С стремится к постоянному значению 0,47. При температуре ниже -180°С теплоемкость алмаза становится исчезающе малой и при -27°С она практически делается равной нулю.

Химические свойства углерода . При нагревании выше 1000°С как алмаз, так и уголь постепенно превращаются в графит, который поэтому следует рассматривать как наиболее устойчивую (в условиях высоких температур) монотропную форму углерода. Превращение аморфного угля в графит начинается по-видимому около 800°С и заканчивается при 1100°С (в этой последней точке уголь теряет свою адсорбционную активность и способность к реактивации, а электропроводность его резко возрастает, оставаясь в дальнейшем почти постоянной). Для свободного углерода характерна инертность при обычных температурах и значительная активность - при высоких. Наиболее активен в химическом отношении аморфный уголь, в то время как алмаз обладает наибольшей резистентностью. Так, например, фтор реагирует с углем при температуре 15°С, с графитом же лишь при 500°С, а с алмазом при 700°С. При нагревании на воздухе пористый уголь начинает окисляться ниже 100°С, графит около 650°С, алмаз же выше 800°С. При температуре 300°С и выше уголь соединяется с серой в сероуглерод CS 2 . При температуре выше 1800°С углерод (уголь) начинает взаимодействовать с азотом, образуя (в незначительных количествах) дициан C 2 N 2 . Взаимодействие углерода с водородом начинается при 1200°С, причем в интервале температур 1200-1500°С образуется только метан СН 4 ; выше 1500°С - смесь метана, этилена (С 2 Н 4) и ацетилена (С 2 Н 2); при температуре порядка 3000°С получается почти исключительно ацетилен. При температуре электрической дуги углерод вступает в прямое соединение с металлами, кремнием и бором, образуя соответствующие карбиды. Прямыми или косвенными путями м. б. получены соединения углерода со всеми известными элементами, кроме газов нулевой группы. Углерод - элемент неметаллического характера, проявляющий некоторые признаки амфотерности. Атом углерода имеет диаметр 1,50 Ᾰ (1Ᾰ = 10 -8 см) и содержит во внешней сфере 4 валентных электрона, которые с равной легкостью отдаются либо дополняются до 8; поэтому нормальная валентность углерода как кислородная, так и водородная равна четырем. В подавляющем большинстве своих соединений углерод четырехвалентен; лишь в незначительном числе известны соединения двухвалентного углерода (окись углерода и ее ацетали, изонитрилы, гремучая кислота и ее соли) и трехвалентного (т. н. «свободный радикал»).

С кислородом углерод образует два нормальных окисла: двуокись углерода СО 2 кислотного характера и нейтральную окись углерода СО. Кроме того существует ряд недокисей углерода , содержащих более 1 атома С, не имеющих технического значения; из них наиболее известна недокись состава С 3 О 2 (газ с температурой кипения +7°С и температурой плавления -111°С). Первым продуктом горения углерода и его соединений является СО 2 , образующаяся по уравнению:

С+О 2 = СО 2 +97600 cal.

Образование СО при неполном сгорании топлива есть результат вторичного восстановительного процесса; восстановителем в этом случае служит сам углерод, который при температуре выше 450°С реагирует с СО 2 по уравнению:

СО 2 +С = 2СО -38800 cal;

реакция эта обратима; выше 950°С превращение СО 2 в СО делается практически полным, что и осуществляется в газогенераторных печах. Энергичная восстановительная способность углерода при высоких температурах используется также при получении водяного газа (Н 2 О+С = СО+Н 2 -28380 cal) и в металлургических процессах - для получения свободного металла из его окисла. К действию некоторых окислителей аллотропные формы углерода относятся различно: например, смесь KCIO 3 + HNO 3 на алмаз совершенно не действует, аморфный уголь окисляется ею сполна в СО 2 , графит же дает соединения ароматического ряда - графитовые кислоты с эмпирической формулой (С 2 ОН)х и далее меллитовую кислоту С 6 (СООН) 6 . Соединения углерода с водородом – углеводороды - крайне многочисленны; от них генетически производится большинство остальных органических соединений, в которые кроме углерода входят чаще всего Н, О, N, S и галоиды.

Исключительное многообразие органических соединений, которых известно до 2 млн., обусловлено некоторыми особенностями углерода как элемента. 1) Для углерода характерна прочность химической связи с большинством остальных элементов как металлического, так и неметаллического характера, благодаря чему он образует достаточно устойчивые соединения и с теми и с другими. Вступая в сочетание с другими элементами, углерод весьма мало склонен к образованию ионов. Большая часть органических соединений - гомеополярного типа и в обычных условиях не диссоциирует; разрыв внутримолекулярных связей в них нередко требует затраты значительного количества энергии. При суждении о прочности связей следует однако различать; а) прочность связи абсолютную, измеряемую термохимическим путем, и б) способность связи разрываться под действием различных реагентов; эти две характеристики далеко не всегда совпадают. 2) Атомы углерода с исключительной легкостью связываются друг с другом (неполярно), образуя углеродные цепи , открытые или замкнутые. Длина таких цепей по-видимому не подвержена никаким ограничениям; так, известны вполне устойчивые молекулы с открытыми цепями из 64 атомов углерода. Удлинение и усложнение открытых цепей не отражается на прочности связи их звеньев между собою или с другими элементами. Среди замкнутых цепей наиболее легко образуются 6- и 5-членные кольца, хотя известны кольчатые цепи, содержащие от 3 до 18 углеродных атомов. Способность атомов углерода к взаимному соединению хорошо объясняет особые свойства графита и механизм процессов обугливания; она делает понятным и тот факт, что углерод неизвестен в форме двухатомных молекул С 2 , чего можно было бы ожидать по аналогии с другими легкими неметаллическими элементами (в парообразной форме углерод состоит из одноатомных молекул). 3) Благодаря неполярному характеру связей очень многие соединения углерода обладают химической инертностью не только внешней (медленность реагирования), но и внутренней (затрудненность внутримолекулярных перегруппировок). Наличие больших «пассивных сопротивлений» сильно затрудняет самопроизвольное превращение неустойчивых форм в устойчивые, часто сводя скорость такого превращения к нулю. Результатом этого является возможность реализации большого числа изомерных форм, практически одинаково устойчивых при обыкновенной температуре.

Аллотропия и атомная структура углерода . Рентгенографический анализ дал возможность с достоверностью установить атомную структуру алмаза и графита. Этот же метод исследования пролил свет и на вопрос о существовании третьей аллотропной модификации углерода, являющийся по сути дела вопросом об аморфности или кристалличности угля: если уголь - аморфное образование, то он не м. б. отождествлен ни с графитом, ни с алмазом, а должен рассматриваться как особая форма углерода, как индивидуальное простое вещество. В алмазе атомы углерода размещены т. о., что каждый атом лежит в центре тетраэдра, вершинами которого являются 4 смежных атома; каждый из последних в свою очередь является центром другого такого же тетраэдра; расстояния между смежными атомами равны 1,54 Ᾰ (ребро элементарного куба кристаллической решетки равно 3,55 Ᾰ). Такая структура является наиболее компактной; ей соответствуют высокая твердость, плотность и химическая инертность алмаза (равномерное распределение валентных сил). Взаимная связь атомов углерода в решетке алмаза такая же, как и в молекулах большинства органических соединений жирного ряда (тетраэдрическая модель углерода). В кристаллах графита атомы углерода расположены плотными слоями, отстоящими один от другого на 3,35-3,41 Ᾰ; направление этих слоев совпадает с плоскостями спайности и плоскостями скольжения при механических деформациях. В плоскости каждого слоя атомы образуют сетку с шестиугольными ячейками (роты); сторона такого шестиугольника равна 1,42-1,45 Ᾰ. В смежных слоях шестиугольники не лежат один под другим: совпадение их по вертикали повторяется лишь через 2 слоя в третьем. Три связи каждого атома углерода лежат в одной плоскости, образуя углы в 120°; 4-я связь направлена попеременно в ту или другую сторону от плоскости к атомам соседних слоев. Расстояния между атомами в слое строго постоянны, расстояние же между отдельными слоями м. б. изменено внешними воздействиями: так, при прессовании под давлением до 5000 atm оно уменьшается до 2,9 Ᾰ, а при набухании графита в концентрированной HNO 3 - увеличивается до 8 Ᾰ. В плоскости одного слоя атомы углерода связаны гомеополярно (как в углеводородных цепях), связи же между атомами смежных слоев имеют скорее металлический характер; это видно из того, что электропроводность кристаллов графита в направлении, перпендикулярном к слоям, в ~100 раз превышает проводимость по направлению слоя. Т. о. графит обладает свойствами металла в одном направлении и свойствами неметалла - в другом. Расположение атомов углерода в каждом слое решетки графита совершенно такое же, как в молекулах сложноядерных ароматических соединений. Такая конфигурация хорошо объясняет резкую анизотропность графита, исключительно развитую спайность, антифрикционные свойства и образование ароматических соединений при его окислении. Аморфная модификация черного углерода, по-видимому, существует как самостоятельная форма (О. Руфф). Для нее наиболее вероятным является пенообразное ячеистое строение, лишенное всякой правильности; стенки таких ячеек образованы слоями активных атомов углерода толщиною примерно в 3 атома. На практике активная субстанция угля залегает обычно под оболочкой из тесно расположенных неактивных атомов углерода, ориентированных графитообразно, и пронизана включениями очень мелких графитовых кристаллитов. Определенной точки превращения уголь→графит вероятно не имеется: между обеими модификациями осуществляется непрерывный переход, на протяжении которого происходит перестроение беспорядочно скученной массы С-атомов аморфного угля в правильную кристаллическую решетку графита. В силу своего беспорядочного расположения атомы углерода в аморфном угле проявляют максимум остаточного сродства, что (согласно представлениям Лангмюира о тождественности адсорбционных сил с силами валентными) соответствует столь характерной для угля высокой адсорбционной и каталитической активности. Атомы углерода, ориентированные в кристаллическую решетку, затрачивают на взаимное сцепление все свое сродство (в алмазе) или большую часть его (в графите); этому соответствует понижение химической активности и активности адсорбционной. У алмаза адсорбция возможна лишь на поверхности монокристалла, у графита же остаточная валентность может проявляться на обеих поверхностях каждой плоской решетки (в «щелях» между слоями атомов), что и подтверждается фактом способности графита к набуханию в жидкостях (HNO 3) и механизмом его окисления в графитовую кислоту.

Техническое значение углерода . Что касается б. или м. свободного углерода, получаемого при процессах обугливания и коксования, то его применение в технике основывается как на химических (инертность, восстановительная способность), так и на физических его свойствах (жаростойкость, электропроводность, адсорбционная способность). Так, кокс и древесный уголь, помимо частичной прямой утилизации их в качестве беспламенного топлива, используются для получения газообразного горючего (генераторных газов); в металлургии черных и цветных металлов - для восстановления металлических окислов (Fe, Сu, Zn, Ni, Сг, Мn, W, Mo, Sn, As, Sb, Bi); в химической технологии - как восстановитель при получении сульфидов (Na, Са, Ва) из сульфатов, безводных хлористых солей (Mg, Аl), из окисей металлов, при производстве растворимого стекла и фосфора - как сырье для получения карбида кальция, карборунда и других карбидов сероуглерода и т. д.; в строительном деле - как термоизолирующий материал. Ретортный уголь и кокс служат материалом для электродов электрических печей, электролитических ванн и гальванических элементов, для изготовления дуговых углей, реостатов, коллекторных щеток, плавильных тиглей и т. п., а также в качестве насадки в химической аппаратуре башенного типа. Древесный уголь кроме указанных выше применений идет для получения концентрированной окиси углерода, цианистых солей, для цементации стали, широко используется как адсорбент, как катализатор для некоторых синтетических реакций, наконец входит в состав дымного пороха и других взрывчатых и пиротехнических составов.

Аналитическое определение углерода . Качественно углерод определяется обугливанием пробы вещества без доступа воздуха (что пригодно далеко не для всех веществ) или, что гораздо надежнее, исчерпывающим окислением его, например, прокаливанием в смеси с окисью меди, причем образование СО 2 доказывается обычными реакциями. Для количественного определения углерода навеска вещества подвергается сожжению в атмосфере кислорода; образующаяся СО 2 улавливается раствором щелочи и определяется весовым или объемным путем по обычным методам количественного анализа. Этот способ годен для определения углерода не только в органических соединениях и технических углях, но также и в металлах.

Его называют основой жизни. Он есть во всех органических соединениях. Только он способен формировать молекулы из миллионов атомов, такие, как ДНК.

Узнали героя ? Это углерод . Число его соединений, известных науке, приближается к 10 000 000.

Столько не наберется у всех остальных, вместе взятых элементов. Не удивительно, что один из двух разделов химии изучает исключительно соединения углерода и проходится в старших классах.

Предлагаем вспомнить школьную программу, а так же, дополнить ее новыми фактами.

Что такое углерод

Во-первых, элемент углерод – составная . В ее новом стандарте, вещество располагается в 14-ой группе.

В устаревшем варианте системы, углерод стоит в главной подгруппе 4-ой группы.

Обозначение элемента – буква С. Порядковый номер вещества – 6, относится к группе неметаллов.

Органический углерод соседствует в природе с минеральным. Так, , и камень фуллерен – 6-ой элемент в чистом виде.

Различия во внешности обусловлены несколькими типами строения кристаллической решетки. От нее зависят и полярные характеристики минерального углерода.

Графит, к примеру, мягок, не зря же добавляется в пишущие карандаши, а всех остальных на Земле. Поэтому, логично рассмотреть свойства самого углерода, а не его модификаций.

Свойства углерода

Начнем со свойств, общих для всех неметаллов. Они электроотрицательны, то есть, оттягивают на себя общие электронные пары, образованные с другими элементами.

Получается, углерод может восстановить оксиды неметаллов до состояния металлов.

Однако, делает это 6-ой элемент лишь при нагреве. В обычных условиях вещество химически инертно.

На внешних электронных уровнях неметаллов больше электронов, чем у металлов.

Именно поэтому, атомы 6-го элемента стремятся достроить толику собственных орбиталей, чем отдавать свои частицы кому-то.

Металлам же, с минимумом электронов на внешних оболочках проще отдать отдаленные частицы, чем перетягивать на себя чужие.

Главная форма 6-го вещества – атом. По идее, речь должна идти о молекуле углерода . Из молекул составлено большинство неметаллов.

Однако, углерод с и – исключения, имеют атомную структуру. Именно за счет нее соединения элементов отличаются высокими температурами плавления.

Еще одно отличительное свойство многих форм углерода – . У того же она максимальна, равна 10-ти баллам по .

Раз разговор зашел о формах 6-го вещества, укажем, что кристаллическая – лишь одна из.

Атомы углерода не всегда выстраиваются в кристаллическую решетку. Встречается аморфная разновидность.

Примеры таковой: — древесный , кокс, стеклоуглерод. Это соединения, но не имеющие упорядоченной структуры.

Если же вещество соединено с другими, могут получиться и газы. Кристаллический углерод переходит в них при температуре в 3700 градусов.

В обычных условиях элемент газообразен, если это, к примеру, оксид углерода .

В народе его именуют угарным газом. Однако, реакция его образования активнее и быстрее, если, все же, поддать жару.

Газообразных соединений углерода с кислородом несколько. Есть еще, к примеру, монооксид.

Этот газ бесцветный и ядовитый, причем, при обычных условиях. Такая окись углерода имеет тройную связь в молекуле.

Но, вернемся к чистому элементу. Будучи довольно инертным в химическом плане, он, все же, может взаимодействовать не только с металлами, но и их оксидами, , и как видно из разговора про газы, с кислородом.

Реакция возможна и с водородом. Углерод вступит во взаимодействие, если «сыграет» один из факторов, или все вместе: температура, аллотропное состояние, дисперсность.

Под последней, подразумевается отношение площади поверхности частиц вещества к занимаемому ими объему.

Аллотропия – возможность нескольких форм одного и того же вещества, то есть, имеется в виду кристаллический, аморфный, или газообразный углерод .

Однако, как не совпадай факторы, с кислотами и щелочами элемент не реагирует вовсе. Игнорирует углерод и почти все галогены.

Чаще всего, 6-ое вещество связывается само с собой, образовывая те самые масштабные молекулы из сотен и миллионов атомов.

Сформированные молекулы, углерода реагируют с еще меньшим числом элементов и соединений.

Применение углерода

Применение элемента и его производных столь же обширно, как их число. Содержание углерода в жизни человека больше, чем может казаться.

Активированный уголь из аптеки – 6-е вещество. в из – он же.

Графит в карандашах – тоже углерод, нужный, так же, в ядерных реакторах и контактах электрических машин.

Метановое топливо тоже в списке. Диоксид углерода нужен для производства и может быть сухим льдом, то есть, хладагентом.

Углекислый газ служит консервантом, заполняя овощные хранилища, а еще, нужен для получения карбонатов.

Последние, используют в строительстве, к примеру, . А карбонат пригождается в мыловарении и стекольном производстве.

Формула углерода соответствует еще и коксу. Он пригождается металлургам.

Кокс служит восстановителем во время переплавки руды, извлечения из нее металлов.

Даже обычная сажа – углерод, используемый в качестве удобрения и наполнителя .

Не задумывались, почему автомобильные шины цвета? Это сажа. Она придает резине прочность.

Сажа, так же, входит в крема для обуви, краски для печати, туши для ресниц. Народное название употребляется не всегда. Промышленники зовут сажу техническим углеродом .

Масса углерода начинает использоваться в сфере нанотехнологий. Сделаны сверхмалые транзисторы, а еще трубки, которые в 6-7 раз прочнее .

Вот вам и неметалл. К наноизысканиям, кстати, подключились ученые из . Из углеродных трубок и графена они создали аэрогель.

Это и прочный материал. Звучит увесисто. Но, на самом деле, аэрогель легче воздуха.

В железо углерод добавляют, чтобы получить так называемую углеродистую сталь. Она тверже обычной.

Однако, массовая доля 6-го элемента в не должна превышать пары, тройки процентов. Иначе, свойства стали идут на спад.

Список можно продолжать бесконечно. Но, где бесконечно брать углерод? Добывают его или синтезируют? На эти вопросы ответим в отдельной главе.

Добыча углерода

Двуокись углерода , метан, отдельно углерод, можно получать химическим путем, то есть, намеренным синтезом. Однако, это не выгодно.

Газ углерод и его твердые модификации проще и дешевле добывать попутно с каменным углем.

Из земных недр этого ископаемого извлекают примерно 2 миллиарда тонн ежегодно. Хватает, чтобы обеспечить мир техническим углеродом.

Что касается , их извлекают из кимбирлитовых трубок. Это вертикальные геологические тела, сцементированные лавой осколки породы.

Именно в таких встречаются . Поэтому, ученые предполагают, что минерал формируется на глубинах в тысячи километров, там же, где и магма.

Месторождения графита, напротив, горизонтальны, располагаются у поверхности.

Поэтому, добыча минерала довольно проста и не затратна. В год из недр извлекают около 500 000 тонн графита.

Чтобы получить активированный уголь, приходится нагреть каменный уголь и обработать струей водяного пара.

Ученые даже разобрались, как воссоздать белки человеческого тела. Их основа – тоже углерод. Азот и водород – аминогруппа, к нему примыкающая.

Нужен, так же, кислород. То есть, белки построены на аминокислоте. Она не у всех на слуху, но для жизни куда важнее остальных.

Популярные серная, азотная, соляная кислоты, к примеру, организму нужны куда меньше.

Так что, углерод – то, за что стоит платить. Узнаем, на сколько велик разброс цен на разные товары из 6-го элемента.

Цена углерода

Для жизни, как несложно понять, углерод бесценен. Что же касается остальных сфер бытия, ценник зависит от наименования продукции и ее качества.

За , к примеру, платят больше, если не содержат сторонних включений.

Образцы аэрогеля, пока, стоят десятки долларов за несколько квадратных сантиметров.

Но, в будущем, производители обещают поставлять материал рулонами и просить недорого.

Технический углерод, то есть, сажа, реализуется по 5-7 рублей за кило. За тонну, соответственно, отдают около 5000-7000 рублей.

Однако, углеродный налог, вводимый в большинстве развитых стран, может обеспечить рост цен.

Углеродную промышленность считают причиной парникового эффекта. Предприятия обязывают платить за выбросы, в частности, CO 2 .

Это главный парниковый газ и, одновременно, индикатор загрязнения атмосферы. Эта информация – ложка дегтя в бочке меда.

Она позволяет понять, что у углерода, как и всего в мире, есть обратная сторона, а не только плюсы.

Углерод (С) - шестой элемент периодической таблицы Менделеева с атомным весом 12. Элемент относится к неметаллам и имеет изотоп 14 С. Строение атома углерода лежит в основе всей органической химии, т. к. все органические вещества включают молекулы углерода.

Атом углерода

Положение углерода в периодической таблице Менделеева:

  • шестой порядковый номер;
  • четвёртая группа;
  • второй период.

Рис. 1. Положение углерода в таблице Менделеева.

Опираясь на данные из таблицы, можно заключить, что строение атома элемента углерода включает две оболочки, на которых расположено шесть электронов. Валентность углерода, входящего в состав органических веществ, постоянна и равна IV. Это значит, что на внешнем электронном уровне находится четыре электрона, а на внутреннем - два.

Из четырёх электронов два занимают сферическую 2s-орбиталь, а оставшиеся два - 2p-орбиталь в виде гантели. В возбуждённом состоянии один электрон с 2s-орбитали переходит на одну из 2p-орбиталей. При переходе электрона с одной орбитали на другую затрачивается энергия.

Таким образом, возбуждённый атом углерода имеет четыре неспаренных электрона. Его конфигурацию можно выразить формулой 2s 1 2p 3 . Это даёт возможность образовывать четыре ковалентные связи с другими элементами. Например, в молекуле метана (СН 4) углерод образует связи с четырьмя атомами водорода - одна связь между s-орбиталями водорода и углерода и три связи между p-орбиталями углерода и s-орбиталями водорода.

Схему строения атома углерода можно представить в виде записи +6C) 2) 4 или 1s 2 2s 2 2p 2 .

Рис. 2. Строение атома углерода.

Физические свойства

Углерод встречается в природе в виде горных пород. Известно несколько аллотропных модификаций углерода:

  • графит;
  • алмаз;
  • карбин;
  • уголь;
  • сажа.

Все эти вещества отличаются строением кристаллической решётки. Наиболее твёрдое вещество - алмаз - имеет кубическую форму углерода. При высоких температурах алмаз превращается в графит с гексагональной структурой.

Рис. 3. Кристаллические решётки графита и алмаза.

Химические свойства

Атомное строение углерода и его способность присоединять четыре атома другого вещества определяют химические свойства элемента. Углерод реагирует с металлами, образуя карбиды:

  • Са + 2С → СаС 2 ;
  • Cr + C → CrC;
  • 3Fe + C → Fe 3 C.

Также реагирует с оксидами металлов:

  • 2ZnO + C → 2Zn + CO 2 ;
  • PbO + C → Pb + CO;
  • SnO 2 + 2C → Sn + 2CO.

При высоких температурах углерод реагирует с неметаллами, в частности с водородом, образуя углеводороды:

С + 2Н 2 → СН 4 .

С кислородом углерод образует углекислый газ и угарный газ:

  • С + О 2 → СО 2 ;
  • 2С + О 2 → 2СО.

Угарный газ также образуется при взаимодействии с водой.

УГЛЕРОД, С (а. carbon; н. Kohlenstoff; ф. carbone; и. carbono), — химический элемент IV группы периодической системы Менделеева , атомный номер 6, атомная масса 12,041. Природный углерод состоит из смеси 2 стабильных изотопов: 12 С (98,892%) и 13 С (1,108%). Известно также 6 радиоактивных изотопов углерода, из которых наиболее важным является изотоп 14 С с периодом полураспада 5,73.10 3 лет (этот изотоп в небольших количествах постоянно образуется в верхних слоях атмосферы в результате облучения ядер 14 N нейтронами космического излучения).

Углерод известен с глубокой древности. Древесный использовался для восстановления металлов из руд , а алмаз — как . Признание углерода в качестве химического элемента связано с именем французского химика А. Лавуазье (1789).

Модификации и свойства углерода

Известны 4 кристаллические модификации углерода: графит , алмаз, карбин и лонсдейлит, сильно различающиеся по своим свойствам. Карбин — искусственно полученная разновидность углерода, представляющая собой мелкокристаллический порошок чёрного цвета, кристаллическая структура которого характеризуется наличием длинных цепочек атомов углерода, расположенных параллельно друг другу. Плотность 3230-3300 кг/м 3 , теплоёмкость 11,52 Дж/моль.К. Лонсдейлит обнаружен в метеоритах и получен искусственно; его структура и физические свойства окончательно не установлены. Для углерода характерно также состояние с неупорядоченной структурой — т.н. аморфный углерод (сажа, кокс , древесный уголь). Физические свойства "аморфного" углерода в сильной степени зависят от дисперсности частиц и от наличия примесей.

Химические свойства углерода

В соединениях углерод имеет степени окисления +4 (наиболее распространённая), +2 и +3. При обычных условиях углерод химически инертен, при высоких температурах соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность углерода убывает в ряду "аморфный" углерод, графит, алмаз; взаимодействие с кислородом воздуха у этих разновидностей углерода происходит соответственно при температурах 300-500°С, 600-700°С и 850-1000°С с образованием диоксида (CO 2) и монооксида (CO) углерода. Диоксид растворяется в воде с образованием угольной кислоты. Все формы углерода устойчивы к щелочам и кислотам. С галогенами углерод практически не взаимодействует (кроме графита, который с F 2 выше 900°С реагирует), поэтому его галогениды получают косвенным путём. Среди азотсодержащих соединений важное практическое значение имеют цианистый водород HCN (синильная кислота) и его многочисленные производные. При температурах выше 1000°С углерод взаимодействует со многими металлами, образуя карбиды. Все формы углерода нерастворимы в обычных неорганических и органических растворителях.

Важнейшее свойство углерода — способность его атомов образовывать прочные химические связи между собой, а также между собой и другими элементами. Способность углерода образовывать 4 равнозначные валентные связи с другими атомами углерода позволяет строить углеродные скелеты разных типов (линейные, разветвлённые, циклические); именно этими свойствами и объясняется исключительная роль углерода в строении всех органических соединений и, в частности, всех живых организмов.

Углерод в природе

Среднее содержание углерода в земной коре 2,3.10 % (по массе); при этом основная масса углерода концентрируется в осадочных горных породах (1%), тогда как в других горных породах существенно более низкие и примерно одинаковые (1-3.10%) концентрации этого элемента. Углерод накапливается в верхней части , где его присутствие связано в основном с живым веществом (18%), древесиной (50%), каменным углём (80%), нефтью (85%), антрацитом (96%), а также с доломитами и известняками . Известно свыше 100 минералов углерода, из которых наиболее распространены карбонаты кальция , магния и железа (кальцит CaCO 3 , доломит (Ca, Mg)CO 3 и сидерит FeCO 3). С накоплением углерода в земной коре часто связано и накопление других элементов, сорбируемых органическим веществом и осаждающихся после его захоронения на дне водоёмов в виде нерастворимых соединений. Большие количества диоксида CO 2 выделяются в атмосферу из Земли при вулканической деятельности и при сжигании органических топлив. Из атмосферы CO 2 усваивается растениями в процессе фотосинтеза и растворяется в морской воде , слагая тем самым важнейшие звенья общего круговорота углерода на Земле. Важную роль играет углерод и в космосе; на Солнце углерод занимает 4-е место по распространённости после водорода, гелия и кислорода, участвуя в ядерных процессах.

Применение и использование

Важнейшее народно-хозяйственное значение углерода определяется тем, что около 90% всех первичных источников энергии, потребляемой человеком, приходится на органическое топливо. Наблюдается тенденция использовать нефть и не как топливо, а как сырьё для разнообразных химических производств. Меньшую, но тем не менее весьма существенную роль в народном хозяйстве играет углерод, добываемый в виде карбонатов (металлургия, строительство, химические производства), алмазов (ювелирные украшения, техника) и графита (ядерная техника, жаропрочные тигли, карандаши, некоторые виды смазок и т.д.). По удельной активности изотопа 14 С в остатках биогенного происхождения определяют их возраст (радиоуглеродный метод датирования). 14 С широко используется в качестве радиоактивного индикатора. Важное значение имеет наиболее распространённый изотоп 12 С — одна двенадцатая часть массы атома этого изотопа принята за единицу атомной массы химических элементов.