Радиоактивный уран 235 92. Характеристика основных естественных и искусственных радионуклидов

Деление ядер урана было открыто в 1938 г. немецкими учеными О. Ганом и Ф. Штрассманом. Им удалось установить, что при бомбардировке ядер урана нейтронами образуются элементы средней части периодической системы: барий, криптон и др. Правильное толкование этому факту дали австрийский физик Л. Мейтнер и английский физик О. Фриш. Они объяснили появление этих элементов распадом ядер урана, захватившего нейтрон, на две примерно равные части. Это явление получило название деления ядер, а образующиеся ядра - осколков деления.

См. также

  1. Васильев А. Деление урана: от Клапрота до Гана //Квант. - 2001. - № 4. - С. 20-21,30 .

Капельная модель ядра

Объяснить эту реакцию деления можно основываясь на капельной модели ядра. В этой модели ядро рассматривается как капля электрически заряженной несжимаемой жидкости. Кроме ядерных сил, действующих между всеми нуклонами ядра, протоны испытывают дополнительное электростатическое отталкивание, вследствие которого они располагаются на периферии ядра. В невозбужденном состоянии силы электростатического отталкивания скомпенсированы, поэтому ядро имеет сферическую форму (рис. 1, а).

После захвата ядром \(~^{235}_{92}U\) нейтрона образуется промежуточное ядро \(~(^{236}_{92}U)^*\), которое находится в возбужденном состоянии. При этом энергия нейтрона равномерно распределяется между всеми нуклонами, а само промежуточное ядро деформируется и начинает колебаться. Если возбуждение невелико, то ядро (рис. 1, б), освобождаясь от излишка энергии путем испускания γ -кванта или нейтрона, возвращается в устойчивое состояние. Если же энергия возбуждения достаточно велика, то деформация ядра при колебаниях может быть настолько большой, что в нем образуется перетяжка (рис. 1, в), аналогичная перетяжке между двумя частями раздваивающейся капли жидкости. Ядерные силы, действующие в узкой перетяжке, уже не могут противостоять значительной кулоновской силе отталкивания частей ядра. Перетяжка разрывается, и ядро распадается на два "осколка" (рис. 1, г), которые разлетаются в противоположные стороны.

uran.swf Flash: Деление урана Увеличить Flash Рис. 2.

В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид:

\(~^{235}_{92}U + \ ^1_0n \ ^{\nearrow}_{\searrow} \ \begin{matrix} ^{144}_{56}Ba + \ ^{89}_{36}Kr + \ 3^1_0n \\ ^{140}_{54}Xe + \ ^{94}_{38}Sr + \ 2^1_0n \end{matrix}\) .

Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д.

При делении ядер тяжелых атомов (\(~^{235}_{92}U\)) выделяется очень большая энергия - около 200 МэВ при делении каждого ядра. Около 80 % этой энергии выделяется в виде кинетической энергии осколков; остальные 20 % приходятся на энергию радиоактивного излучения осколков и кинетическую энергию мгновенных нейтронов.

Оценку выделяющей при делении ядра энергии можно сделать с помощью удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90 – 145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

См. также

  1. Варламов А.А. Капельная модель ядра //Квант. - 1986. - № 5. - С. 23-24

Цепная реакция

Цепная реакция - ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Схема развития цепной реакции деления ядер урана представлена на рис. 3.

reakcia.swf Flash: цепная реакция Увеличить Flash Рис. 4.

Уран встречается в природе в виде двух изотопов\[~^{238}_{92}U\] (99,3 %) и \(~^{235}_{92}U\) (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления \(~^{235}_{92}U\) наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра \(~^{238}_{92}U\) вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ. Иначе энергия возбуждения образовавшихся ядер \(~^{239}_{92}U\) оказывается недостаточной для деления, и тогда вместо деления происходят ядерные реакции:

\(~^{238}_{92}U + \ ^1_0n \to \ ^{239}_{92}U \to \ ^{239}_{93}Np + \ ^0_{-1}e\) .

Изотоп урана \(~^{238}_{92}U\) β -радиоактивен, период полураспада 23 мин. Изотоп нептуния \(~^{239}_{93}Np\) тоже радиоактивен, период полураспада около 2 дней.

\(~^{239}_{93}Np \to \ ^{239}_{94}Pu + \ ^0_{-1}e\) .

Изотоп плутония \(~^{239}_{94}Np\) относительно стабилен, период полураспада 24000 лет. Важнейшее свойство плутония состоит в том, что он делится под влиянием нейтронов так же, как \(~^{235}_{92}U\). Поэтому с помощью \(~^{239}_{94}Np\) может быть осуществлена цепная реакция.

Рассмотренная выше схема цепной реакции представляет собой идеальный случай. В реальных условиях не все образующиеся при делении нейтроны участвуют в делении других ядер. Часть их захватывается неделящимися ядрами посторонних атомов, другие вылетают из урана наружу (утечка нейтронов).

Поэтому цепная реакция деления тяжелых ядер возникает не всегда и не при любой массе урана.

Коэффициент размножения нейтронов

Развитие цепной реакции характеризуется так называемым коэффициентом размножения нейтронов К , который измеряется отношением числа N i нейтронов, вызывающих деление ядер вещества на одном из этапов реакции, к числу N i-1 нейтронов, вызвавших деление на предыдущем этапе реакции:

\(~K = \dfrac{N_i}{N_{i - 1}}\) .

Коэффициент размножения зависит от ряда факторов, в частности от природы и количества делящегося вещества, от геометрической формы занимаемого им объема. Одно и то же количество данного вещества имеет разное значение К . К максимально, если вещество имеет шарообразную форму, поскольку в этом случае потеря мгновенных нейтронов через поверхность будет наименьшей.

Масса делящегося вещества, в котором цепная реакция идет с коэффициентом размножения К = 1, называется критической массой. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу.

Значение критической массы определяется геометрией физической системы, ее структурой и внешним окружением. Так, для шара из чистого урана \(~^{235}_{92}U\) критическая масса равна 47 кг (шар диаметром 17 см). Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода D 2 O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду.

Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются до тепловых скоростей.

Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до 250 г.

При коэффициенте размножения К = 1 число делящихся ядер поддерживается на постоянном уровне. Такой режим обеспечивается в ядерных реакторах.

Если масса ядерного топлива меньше критической массы, то коэффициент размножения К < 1; каждое новое поколение вызывает все меньшее и меньшее число делений, и реакция без внешнего источника нейтронов быстро затухает.

Если же масса ядерного топлива больше критической, то коэффициент размножения К > 1 и каждое новое поколение нейтронов вызывает все большее число делений. Цепная реакция лавинообразно нарастает и имеет характер взрыва, сопровождающегося огромным выделением энергии и повышением температуры окружающей среды до нескольких миллионов градусов. Цепная реакция такого рода происходит при взрыве атомной бомбы.

Ядерная бомба

В обычном состоянии ядерная бомба не взрывается потому, что ядерный заряд в ней разделен на несколько небольших частей перегородками, поглощающими продукты распада урана, – нейтроны. Цепная ядерная реакция, являющаяся причиной ядерного взрыва, не может поддерживаться в таких условиях. Однако, если фрагменты ядерного заряда соединить вместе, то их суммарная масса станет достаточной для того, чтобы начала развиваться цепная реакция деления урана. В результате происходит ядерный взрыв. При этом мощность взрыва, развиваемая ядерной бомбой сравнительно небольших размеров, эквивалентна мощности, выделяющейся при взрыве миллионов и миллиардов тонн тротила.

Рис. 5. Атомная бомба

(β −)
235 Np ()
239 Pu ()

Спин и чётность ядра 7/2 − Канал распада Энергия распада α-распад 4,6783(7) МэВ 20 Ne, 25 Ne, 28 Mg

В отличие от другого, наиболее распространенного изотопа урана 238 U , в 235 U возможна самоподдерживающаяся цепная ядерная реакция . Поэтому этот изотоп используется как топливо в ядерных реакторах , а также в ядерном оружии .

Образование и распад

Уран-235 образуется в результате следующих распадов:

\mathrm{^{235}_{91}Pa} \rightarrow \mathrm{^{235}_{92}U} + e^- + \bar{\nu}_e; \mathrm{^{235}_{93}Np} + e^- \rightarrow \mathrm{^{235}_{92}U} + \bar{\nu}_e; \mathrm{^{239}_{94}Pu} \rightarrow \mathrm{^{235}_{92}U} + \mathrm{^{4}_{2}He}.

Распад урана-235 происходит по следующим направлениям:

\mathrm{^{235}_{92}U} \rightarrow \mathrm{^{231}_{90}Th} + \mathrm{^{4}_{2}He}; \mathrm{^{235}_{92}U} \rightarrow \mathrm{^{215}_{82}Pb} + \mathrm{^{20}_{10}Ne}; \mathrm{^{235}_{92}U} \rightarrow \mathrm{^{210}_{82}Pb} + \mathrm{^{25}_{10}Ne}; \mathrm{^{235}_{92}U} \rightarrow \mathrm{^{207}_{80}Hg} + \mathrm{^{28}_{12}Mg}.

Вынужденное деление

В продуктах деления урана-235 было обнаружено около 300 изотопов различных элементов : от =30 (цинк) до Z=64 (гадолиний). Кривая зависимости относительного выхода изотопов, образующихся при облучении урана-235 медленными нейтронами, от массового числа - симметрична и по форме напоминает букву «M». Два выраженных максимума этой кривой соответствуют массовым числам 95 и 134, а минимум приходится на диапазон массовых чисел от 110 до 125. Таким образом, деление урана на осколки равной массы (с массовыми числами 115-119) происходит с меньшей вероятностью, чем асимметричное деление , такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра. Осколки, образующиеся при делении ядра урана, в свою очередь являются радиоактивными, и подвергаются цепочке β − -распадов , при которых постепенно в течение длительного времени выделяется дополнительная энергия. Средняя энергия, выделяющаяся при распаде одного ядра урана-235 с учётом распада осколков, составляет приблизительно 202,5 МэВ = 3,244·10 −11 Дж , или 19,54 ТДж/моль = 83,14 ТДж/кг .

Деление ядер - лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора .

Цепная ядерная реакция

При распаде одного ядра 235 U обычно испускается от 1 до 8 (в среднем - 2.416) свободных нейтрона. Каждый нейтрон, образовавшийся при распаде ядра 235 U, при условии взаимодействия с другим ядром 235 U, может вызвать новый акт распада, это явление называется цепной реакцией деления ядра .

Гипотетически, число нейтронов второго поколения (после второго этапа распада ядер) может превышать 3² = 9. С каждым последующим этапом реакции деления количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата 235 U, или будучи захваченными как самим изотопом 235 U с превращением его в 236 U, так и иными материалами (например, 238 U, или образовавшимися осколками деления ядер, такими как 149 Sm или 135 Xe).

В реальных условиях достичь критического состояния урана не так просто, поскольку на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из 235 U, 99,2745 % составляет 238 U , который поглощает нейтроны, образующиеся при делении ядер 235 U. Это приводит к тому, что в природном уране в настоящее время цепная реакция деления очень быстро затухает. Осуществить незатухающую цепную реакцию деления можно несколькими основными путями :

  • Увеличить объём образца (для выделенного из руды урана возможно достижение критической массы за счёт увеличения объёма);
  • Осуществить разделение изотопов, повысив концентрацию 235 U в образце;
  • Уменьшить потерю свободных нейтронов через поверхность образца с помощью применения различного рода отражателей;
  • Использовать вещество - замедлитель нейтронов для повышения концентрации тепловых нейтронов .

Изомеры

  • Избыток массы: 40 920,6(1,8) кэВ
  • Энергия возбуждения: 76,5(4) эВ
  • Период полураспада: 26 мин
  • Спин и чётность ядра: 1/2 +

Распад изомерного состояния осуществляется путём изомерного перехода в основное состояние.

Применение

  • Уран-235 используется в качестве топлива для ядерных реакторов , в которых осуществляется управляемая цепная ядерная реакция деления;
  • Уран с высокой степенью обогащения применяется для создания ядерного оружия . В этом случае для высвобождения большого количества энергии (взрыва) используется неуправляемая цепная ядерная реакция.

См. также

Напишите отзыв о статье "Уран-235"

Примечания

  1. G. Audi, A.H. Wapstra, and C. Thibault (2003). «». Nuclear Physics A 729 : 337-676. DOI :10.1016/j.nuclphysa.2003.11.003 . Bibcode : .
  2. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 . Bibcode : .
  3. Гофман К. - 2-е изд. стер. - Л. : Химия, 1987. - С. 130. - 232 с. - 50 000 экз.
  4. Фиалков Ю. Я. Применение изотопов в химии и химической промышленности. - Киев: Техніка, 1975. - С. 87. - 240 с. - 2 000 экз.
  5. . Kaye & Laby Online. .
  6. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. - М .: Энергоатомиздат, 1982. - С. 512.
Легче:
уран-234
Уран-235 является
изотопом урана
Тяжелее:
уран-236
Изотопы элементов · Таблица нуклидов

Отрывок, характеризующий Уран-235

Милорадович, который говорил, что он знать ничего не хочет о хозяйственных делах отряда, которого никогда нельзя было найти, когда его было нужно, «chevalier sans peur et sans reproche» [«рыцарь без страха и упрека»], как он сам называл себя, и охотник до разговоров с французами, посылал парламентеров, требуя сдачи, и терял время и делал не то, что ему приказывали.
– Дарю вам, ребята, эту колонну, – говорил он, подъезжая к войскам и указывая кавалеристам на французов. И кавалеристы на худых, ободранных, еле двигающихся лошадях, подгоняя их шпорами и саблями, рысцой, после сильных напряжений, подъезжали к подаренной колонне, то есть к толпе обмороженных, закоченевших и голодных французов; и подаренная колонна кидала оружие и сдавалась, чего ей уже давно хотелось.
Под Красным взяли двадцать шесть тысяч пленных, сотни пушек, какую то палку, которую называли маршальским жезлом, и спорили о том, кто там отличился, и были этим довольны, но очень сожалели о том, что не взяли Наполеона или хоть какого нибудь героя, маршала, и упрекали в этом друг друга и в особенности Кутузова.
Люди эти, увлекаемые своими страстями, были слепыми исполнителями только самого печального закона необходимости; но они считали себя героями и воображали, что то, что они делали, было самое достойное и благородное дело. Они обвиняли Кутузова и говорили, что он с самого начала кампании мешал им победить Наполеона, что он думает только об удовлетворении своих страстей и не хотел выходить из Полотняных Заводов, потому что ему там было покойно; что он под Красным остановил движенье только потому, что, узнав о присутствии Наполеона, он совершенно потерялся; что можно предполагать, что он находится в заговоре с Наполеоном, что он подкуплен им, [Записки Вильсона. (Примеч. Л.Н. Толстого.) ] и т. д., и т. д.
Мало того, что современники, увлекаемые страстями, говорили так, – потомство и история признали Наполеона grand, a Кутузова: иностранцы – хитрым, развратным, слабым придворным стариком; русские – чем то неопределенным – какой то куклой, полезной только по своему русскому имени…

В 12 м и 13 м годах Кутузова прямо обвиняли за ошибки. Государь был недоволен им. И в истории, написанной недавно по высочайшему повелению, сказано, что Кутузов был хитрый придворный лжец, боявшийся имени Наполеона и своими ошибками под Красным и под Березиной лишивший русские войска славы – полной победы над французами. [История 1812 года Богдановича: характеристика Кутузова и рассуждение о неудовлетворительности результатов Красненских сражений. (Примеч. Л.Н. Толстого.) ]
Такова судьба не великих людей, не grand homme, которых не признает русский ум, а судьба тех редких, всегда одиноких людей, которые, постигая волю провидения, подчиняют ей свою личную волю. Ненависть и презрение толпы наказывают этих людей за прозрение высших законов.
Для русских историков – странно и страшно сказать – Наполеон – это ничтожнейшее орудие истории – никогда и нигде, даже в изгнании, не выказавший человеческого достоинства, – Наполеон есть предмет восхищения и восторга; он grand. Кутузов же, тот человек, который от начала и до конца своей деятельности в 1812 году, от Бородина и до Вильны, ни разу ни одним действием, ни словом не изменяя себе, являет необычайный s истории пример самоотвержения и сознания в настоящем будущего значения события, – Кутузов представляется им чем то неопределенным и жалким, и, говоря о Кутузове и 12 м годе, им всегда как будто немножко стыдно.
А между тем трудно себе представить историческое лицо, деятельность которого так неизменно постоянно была бы направлена к одной и той же цели. Трудно вообразить себе цель, более достойную и более совпадающую с волею всего народа. Еще труднее найти другой пример в истории, где бы цель, которую поставило себе историческое лицо, была бы так совершенно достигнута, как та цель, к достижению которой была направлена вся деятельность Кутузова в 1812 году.
Кутузов никогда не говорил о сорока веках, которые смотрят с пирамид, о жертвах, которые он приносит отечеству, о том, что он намерен совершить или совершил: он вообще ничего не говорил о себе, не играл никакой роли, казался всегда самым простым и обыкновенным человеком и говорил самые простые и обыкновенные вещи. Он писал письма своим дочерям и m me Stael, читал романы, любил общество красивых женщин, шутил с генералами, офицерами и солдатами и никогда не противоречил тем людям, которые хотели ему что нибудь доказывать. Когда граф Растопчин на Яузском мосту подскакал к Кутузову с личными упреками о том, кто виноват в погибели Москвы, и сказал: «Как же вы обещали не оставлять Москвы, не дав сраженья?» – Кутузов отвечал: «Я и не оставлю Москвы без сражения», несмотря на то, что Москва была уже оставлена. Когда приехавший к нему от государя Аракчеев сказал, что надо бы Ермолова назначить начальником артиллерии, Кутузов отвечал: «Да, я и сам только что говорил это», – хотя он за минуту говорил совсем другое. Какое дело было ему, одному понимавшему тогда весь громадный смысл события, среди бестолковой толпы, окружавшей его, какое ему дело было до того, к себе или к нему отнесет граф Растопчин бедствие столицы? Еще менее могло занимать его то, кого назначат начальником артиллерии.
Не только в этих случаях, но беспрестанно этот старый человек дошедший опытом жизни до убеждения в том, что мысли и слова, служащие им выражением, не суть двигатели людей, говорил слова совершенно бессмысленные – первые, которые ему приходили в голову.
Но этот самый человек, так пренебрегавший своими словами, ни разу во всю свою деятельность не сказал ни одного слова, которое было бы не согласно с той единственной целью, к достижению которой он шел во время всей войны. Очевидно, невольно, с тяжелой уверенностью, что не поймут его, он неоднократно в самых разнообразных обстоятельствах высказывал свою мысль. Начиная от Бородинского сражения, с которого начался его разлад с окружающими, он один говорил, что Бородинское сражение есть победа, и повторял это и изустно, и в рапортах, и донесениях до самой своей смерти. Он один сказал, что потеря Москвы не есть потеря России. Он в ответ Лористону на предложение о мире отвечал, что мира не может быть, потому что такова воля народа; он один во время отступления французов говорил, что все наши маневры не нужны, что все сделается само собой лучше, чем мы того желаем, что неприятелю надо дать золотой мост, что ни Тарутинское, ни Вяземское, ни Красненское сражения не нужны, что с чем нибудь надо прийти на границу, что за десять французов он не отдаст одного русского.
И он один, этот придворный человек, как нам изображают его, человек, который лжет Аракчееву с целью угодить государю, – он один, этот придворный человек, в Вильне, тем заслуживая немилость государя, говорит, что дальнейшая война за границей вредна и бесполезна.
Но одни слова не доказали бы, что он тогда понимал значение события. Действия его – все без малейшего отступления, все были направлены к одной и той же цели, выражающейся в трех действиях: 1) напрячь все свои силы для столкновения с французами, 2) победить их и 3) изгнать из России, облегчая, насколько возможно, бедствия народа и войска.
Он, тот медлитель Кутузов, которого девиз есть терпение и время, враг решительных действий, он дает Бородинское сражение, облекая приготовления к нему в беспримерную торжественность. Он, тот Кутузов, который в Аустерлицком сражении, прежде начала его, говорит, что оно будет проиграно, в Бородине, несмотря на уверения генералов о том, что сражение проиграно, несмотря на неслыханный в истории пример того, что после выигранного сражения войско должно отступать, он один, в противность всем, до самой смерти утверждает, что Бородинское сражение – победа. Он один во все время отступления настаивает на том, чтобы не давать сражений, которые теперь бесполезны, не начинать новой войны и не переходить границ России.
Теперь понять значение события, если только не прилагать к деятельности масс целей, которые были в голове десятка людей, легко, так как все событие с его последствиями лежит перед нами.
Но каким образом тогда этот старый человек, один, в противность мнения всех, мог угадать, так верно угадал тогда значение народного смысла события, что ни разу во всю свою деятельность не изменил ему?
Источник этой необычайной силы прозрения в смысл совершающихся явлений лежал в том народном чувстве, которое он носил в себе во всей чистоте и силе его.
Только признание в нем этого чувства заставило народ такими странными путями из в немилости находящегося старика выбрать его против воли царя в представители народной войны. И только это чувство поставило его на ту высшую человеческую высоту, с которой он, главнокомандующий, направлял все свои силы не на то, чтоб убивать и истреблять людей, а на то, чтобы спасать и жалеть их.

Изучая явление радиоактивности, каждый ученый обращается к такой важнейшей его характеристике как период полураспада. Как известно, гласит, что каждую секунду в мире происходит распад атомов, при этом количественная характеристика этих процессов напрямую связана с количеством имеющихся атомов. Если за определенный период времени произойдет распад половины от всего имеющегося в наличии количества атомов, то распад ½ от оставшихся атомов потребует такого же количества времени. Именно этот временной промежуток и называется периодом полураспада. У разных элементов он различен - от тысячных долей миллисекунды до миллиардов лет, как, например, в случае, когда речь идет про период полураспада урана.

Уран, как самый тяжелый из всех существующих в естественном состоянии элементов на Земле, является вообще самым прекрасным объектом для изучения процесса радиоактивности. Этот элемент был открыт еще в 1789 году немецким ученым М. Клапротом, который дал ему название в честь недавно открытой планеты Уран. То, что уран радиоактивен, было совершенно случайно установлено в конце XIX века французским химиком А. Беккерелем.

Урана рассчитывается по той же формуле, что и аналогичные периоды других радиоактивных элементов:

T_{1/2} = au ln 2 = frac{ln 2}{lambda},

где «au» - среднее время существования атома, «lambda» - основная постоянная распада. Так как ln 2 равен примерно 0,7, то период полураспада лишь на 30% короче в среднем, чем общее время жизни атома.

Несмотря на то, что на сегодняшний день ученым известно 14 изотопов урана, в природе их встречаются только три: уран-234, уран-235 и уран-238. урана различен: так для U-234 он составляет «всего» 270 тысяч лет, а период полураспада урана-238 превышает 4,5 миллиарда. Период полураспада урана-235 находится в «золотой середине» - 710 миллионов лет.

Стоит отметить, что радиоактивность урана в естественных условиях достаточно высока и позволяет, к примеру, засветить фотопластинки в течение всего лишь часа. В то же время стоит отметить, что в из всех изотопов урана только U-235 пригоден для изготовления начинки для Все дело в том, что период полураспада урана-235 в промышленных условиях менее интенсивен, чем его «собратьев», поэтому и выход ненужных нейтронов здесь минимален.

Период полураспада урана-238 значительно превышает 4 миллиарда лет, однако и он сейчас активно используется в атомной промышленности. Так, как для того, чтобы запустить цепную реакцию по делению тяжелых ядер этого элемента, необходимо значительное количество энергии нейтронов. Уран-238 используют в качестве защиты в аппаратах деления и синтеза. Однако большая часть добытого урана-238 используется для синтеза плутония, применяемого в ядерном оружии.

Длительность периода полураспада урана ученые используют для того, чтобы рассчитать возраст отдельных минералов и небесных тел в целом. Урановые часы представляют собой достаточно универсальный механизм для подобного рода расчетов. В то же время, чтобы возраст был рассчитан более или менее точно, необходимо знать не только количество урана в тех или иных породах, но и соотношение урана и свинца как конечного продукта, в который превращаются ядра урана.

Есть еще один способ расчета пород и минералов, он связан с так называемым спонтанным Как известно, в результате спонтанного деления урана в естественных условиях его частицы с колоссальной силой бомбардируют рядом находящиеся вещества, оставляя за собой особые следы - треки.

Именно по количеству этих треков, зная при этом период полураспада урана, ученые и делают вывод о возрасте того или иного твердого тела - будь то древняя порода или относительно «молодая» ваза. Все дело в том, что возраст объекта прямо пропорционален количественному показателю атомов урана, ядра которого бомбардировали его.

Основным способом извлечения урана-235 из природного урана стал газодиффузионный способ. Советские ученые Кикоин, Соболев и Смородинский разработали теорию газодиффузионного процесса. Метод газовой диффузии основан на небольшом различии в скорости перемещения тяжелых ядер урана-238 и менее тяжелых ядер урана-235 при прохождении газообразного соединения урана через специальные пористые перегородки. При однократном прохождении газа, можно повысить содержание изотопа урана-235 всего на 0,2 %. Чтобы обогатить уран изотопом 235 до 90–94 процентов, а именно такой требуется для боевого заряда, необходимо прокачать газ через диффузионную ступень с пористой перегородкой несколько тысяч раз.

Очень сложной проблемой оказалась разработка и изготовление пористых перегородок, от их качества зависели как выход готовой продукции, так и расход электроэнергии на перекачку газа. Непросто было сконструировать и изготовить надежные и простые компрессоры для перекачки газа с высокой степенью герметичности, чтобы токсичный газовый продукт не попадал в производственные помещения.

Газодиффузионный завод начали строить в 1946 году. В начале строительства здесь также применялся ручной труд и конная тяга, лишь в 1948 году сюда прибыл первый экскаватор. Работы велись круглосуточно. Проект завода и его установок был чрезвычайно сложен. Главный корпус завода имел площадь более 100 тысяч квадратных метров. Во время наладки систем происходили многочисленные остановки. Поставщик компрессоров весьма оперативно производил реконструкцию и даже замену оборудования, эти работы находились под личным наблюдением Берии и Сталина. После реконструкции на заводе было установлено несколько тысяч диффузионных машин четырех модификаций.

Несмотря на все трудности дело продвигалось и в 1948 году получен уран-235 с обогащением 75 %. Этого было недостаточно. Тогда приняли промежуточное решение. Уран-235 стали отправлять для дальнейшего обогащения электромагнитным методом, до 90 и более процентов.

В 1950 году газодиффузионный завод повысил обогащение до 90 % и вышел на проектную производительность, в 1951 году обогащение урана превысило 90 %.

Основой завода по электромагнитному разделению изотопов была огромная электромагнитная установка, снабженная специальными камерами из дефицитной латуни. Установку долго налаживали, а в 1949 году она выдала уран с обогащением более 90 %. В дальнейшем завод расширялся.

Таким образом, была решена проблема производства двух видов ядерных взрывчатых веществ: плутония и урана-235 в достаточных количествах для изготовления советского ядерного оружия.

Двадцатый век дал в руки Человечеству столько открытий! Для многих из них целью было облегчить жизнь высшему существу на планете Земля, но реальность как всегда обманчива и человеческий эгоизм порой превосходит простые понятия о добре и зле. Эгоизм не дает уснуть чувству превосходства, власти над миром, и самые великие открытия становятся на путь уничтожения. Начальным этапом открытия деления самого разрушительного вещества на Земле стало бурное развитие промышленности, которой требовались огромные объемы энергии - и эту энергию нашли! Немецкие ученые Отто Ган и Фриц Штрассман открыли поразительное явление: деление ядра урана (U) при бомбардировке его нейтронами (n), при этом в процессе деления высвобождалось огромное количество энергии на один атом вещества (порядка 202,5 МэВ = 3,24*10-11 Дж), а также еще 2-3 нейтрона, которые взаимодействовали с соседними ядрами. Но использовать такое топливо не предоставлялось возможным - реакция в образце урана по невыясненным причинам быстро затухала. Позже было выяснено, что на ход реакции отрицательно влияет один из изотопов, а именно уран 238, который при поглощении нейтрона (n) не испускает в процессе деления новые нейтроны. Однако изотоп урана 235 имеет способность к размножению.
Большим открытием был процесс спонтанного деления ядра урана 235. В 1 грамме металла в час происходит порядка 20 спонтанных делений, но цепная реакция не происходит, а почему? Ответ на этот вопрос достаточно банален - нейтроны промахиваются в достаточно малом объеме вещества и выходят из металла без взаимодействия. Путем расчетов была выяснена минимальная масса образца урана 235, которая составила порядка 48 килограммов. В таком образце - шаре диаметром 25 см реакция не должна была затухать. Но как выделить изотоп урана 235? Попробуем ответить на этот вопрос.
Природный уран представляет собой металл серебристого цвета, легко поддающийся механической обработке, температура плавления составляет 1130 градусов Цельсия. Уран хорошо окисляется на воздухе и воспламеняется в атмосфере при температуре 100 градусов Цельсия, очень ядовит, является источником жесткого альфа- и бета-излучения. Природный уран состоит из нескольких изотопов :
Уран 235 - 0,7184%;
Уран 238 - 99,2760%;
Уран 234 - 0,0056%.
Для промышленного применения пригоден только изотоп с массовым номером 235, остальные являются «мусором». Выделить нужный изотоп не так уж легко: основным способом получения обогащенного урана 235 является прокачка фторида урана через систему центрифуг, в которых более тяжелый изотоп оседает на стенках, а 235-й проходит. Таким способом можно получить обогащение вплоть до 99%.
Промышленный уран 235 в основном применяется в качестве топлива для электростанций, но первоначально этот металл использовался в военных целях как самое мощное на Земле взрывчатое вещество. Последствия военного применения урана 235 внесли большой вклад именно в мирное освоение энергии атомного ядра. Энергия, выделяемая 1 граммом урана, сопоставима со сжиганием 2,5 тонн нефти. Выгода очевидна - применение металла в качестве топлива позволяет сократить добычу полезных ископаемых и перейти на уровень «чистой энергетики», при условии проектирования надежных аварийных систем работы реактора и качественном исполнении самого реактора. Реактор - основная часть АЭС (атомной электростанции), в нем непосредственно происходит процесс деления ядер вещества и передача энергии теплоносителю. Теплоносителю передает энергию турбине, которая, в свою очередь, вырабатывает электрическую энергию. Теплоносителем могут быть различные вещества с высокой теплоемкостью: вода, инертные газы, жидкие щелочные металлы.
В настоящее время энергия урана 235 используется для производства электрической энергии, но запасы металла на Земле ограничены и по подсчетам ученых их хватит лишь на 50 лет интенсивного использования. И именно в наших интересах экономить электрическую энергию, столь сложно достающуюся нам от Природы!