Как понять отдает или принимает электроны. Химия

Окислитель и восстановитель используют для составления реакции в органической и неорганической химии. Рассмотрим основные характеристики таких взаимодействий, выявим алгоритм составления уравнения и расстановки коэффициентов.

Определения

Окислитель - это атом либо ион, который при взаимодействии с другими элементами принимает электроны. Процесс принятия электронов называют восстановлением, и связан он с понижением степени окисления.

В курсе неорганической химии рассматривается два основных метода расстановки коэффициентов. Восстановитель и окислитель в реакциях определяют путем составления электронного баланса либо методом полуреакций. Подробнее остановимся на первом способе расставления коэффициентов в ОВР.

Степени окисления

Прежде чем определять окислитель в реакции, нужно расставить степени окисления у всех элементов в веществах, участвующих в превращении. Она представляет собой заряд атома элемента, вычисленный по определенным правилам. В сложных веществах сумма всех положительных и отрицательных степеней окисления должна быть равна нулю. Для металлов главных подгрупп она соответствует валентности и имеет положительную величину.

Для неметаллов, которые в формуле располагаются в конце, степень определяется путем вычитания из восьми номера группы и имеет отрицательное значение.

У простых веществ она равна нулю, так как не наблюдается процесса принятия или отдачи электронов.

У сложных соединений, состоящих из нескольких химических элементов, для определения степеней окисления используют математические вычисления.

Итак, окислитель - это атом, который в процессе взаимодействия понижает свою степень окисления, а восстановитель, напротив, повышает ее значение.

Примеры ОВР

Основной особенностью заданий, связанных с расстановкой коэффициентов в окислительно-восстановительных реакциях, является определение пропущенных веществ и составление их формул. Окислитель - это элемент, который будет принимать электроны, но помимо него в реакции должен участвовать и восстановитель, отдающий их.

Приведем обобщенный алгоритм, по которому можно выполнять задания, предлагаемые выпускникам старшей школы на едином государственном экзамене. Рассмотрим несколько конкретных примеров, чтобы понять, что окислитель - это не только элемент в сложном веществе, но и простое вещество.

Сначала необходимо расставить у каждого элемента значения степеней окисления, используя определенные правила.

Далее нужно проанализировать элементы, которые не участвовали в образовании веществ, и составить для них формулы. После того как все пропуски будут ликвидированы, можно переходить к процессу составления электронного баланса между окислителем и восстановителем. Полученные коэффициенты ставят в уравнение, при необходимости добавляя их перед теми веществами, которые не вошли в баланс.

Например, пользуясь методом электронного баланса, необходимо завершить предложенное уравнение, расставить перед формулами необходимые коэффициенты.

H 2 O 2 + H 2 SO 4 +KMnO 4 = MnSO 4 + O 2 + …+…

Для начала у каждого определим значения степеней окисления, получим

H 2+ O 2 - + H 2+ S +6 O 4 -2 +K + Mn +7 O 4 -2 = Mn +2 S +6 O 4 -2 + O 2 0 + …+…

В предложенной схеме они меняются у кислорода, а также у марганца в перманганате калия. Таким образом, восстановитель и окислитель нами найдены. В правой части отсутствует вещество, в котором бы был калий, поэтому вместо пропусков составим формулу его сульфата.

Последним действием в данном задании будет расстановка коэффициентов.

5H 2 O 2 + 3H 2 SO 4 +2KMnO 4 = 2Mn SO 4 + 5O 2 + 8H 2 O + K 2 SO 4

В качестве сильных окислителей можно рассмотреть кислоты, перманганат калия, перекись водорода. Все металлы проявляют восстановительные свойства, превращаясь в реакции в катионы, имеющие положительный заряд.

Заключение

Процессы, касающиеся принятия и отдачи отрицательных электронов, происходят не только в неорганической химии. Обмен веществ, который осуществляется в живых организмах, является наглядным вариантом протекания окислительно-восстановительных реакций в органической химии. Это подтверждает значимость рассмотренных процессов, их актуальность для живой и неживой природы.

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается . Окислители при этом восстанавливаются .

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается . Восстановители при этом окисляются .

Химические вещества можно разделить на типичные окислители , типичные восстановители , и вещества, которые могут проявлять и окислительные, и восстановительные свойства . Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F 2 , кислород O 2 , хлор Cl 2);
  • ионы металлов или неметаллов с высокими положительными (как правило, высшими) степенями окисления : кислоты (HN +5 O 3 , HCl +7 O 4), соли (KN +5 O 3 , KMn +7 O 4), оксиды (S +6 O 3 , Cr +6 O 3)
  • соединения, содержащие некоторые катионы металлов , имеющих высокие степени окисления : Pb 4+ , Fe 3+ , Au 3+ и др.

Типичные восстановители – это, как правило:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления : бинарные водородные соединения (H 2 S, HBr), соли бескислородных кислот (K 2 S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn 2+ , Fe 2+ , Cr 2+), которые, отдавая электроны, могут повышать свою степень окисления ;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S +4 O 3) 2– , (НР +3 O 3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления .

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства .

Типичные окислители и восстановители приведены в таблице.

В лабораторной практике наиболее часто используются следующие окислители :

    перманганат калия (KMnO 4);

    дихромат калия (K 2 Cr 2 O 7);

    азотная кислота (HNO 3);

    концентрированная серная кислота (H 2 SO 4);

    пероксид водорода (H 2 O 2);

    оксиды марганца (IV) и свинца (IV) (MnO 2 , PbO 2);

    расплавленный нитрат калия (KNO 3) и расплавы некоторых других нитратов.

К восстановителям , которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
  • водород (Н 2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na 2 S) и сероводород (H 2 S);
  • сульфит натрия (Na 2 SO 3);
  • хлорид олова (SnCl 2).

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования .

Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов . При этом образуются разные продукты окисления и восстановления .

2Al 0 + Fe +3 2 O 3 → Al +3 2 O 3 + 2Fe 0 ,

C 0 + 4HN +5 O 3(конц) = C +4 O 2 + 4N +4 O 2 + 2H 2 O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например :

(N -3 H 4) 2 Cr +6 2 O 7 → N 2 0 + Cr +3 2 O 3 + 4 H 2 O,

2 NaN +5 O -2 3 → 2 NaN +3 O 2 + O 0 2 .

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты :

3Br 2 + 6 KOH → 5KBr + KBrO 3 + 3 H 2 O,

Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент , которыйиз разных реагентов переходит в один продукт . Реакция, обратная диспропорционированию.

2H 2 S -2 + S +4 O 2 = 3S + 2H 2 O

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

Окислитель восстанавливается , а восстановитель окисляется .

В окислительно-восстановительных реакциях соблюдается электронный баланс : количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

Рассмотрим подробно метод электронного баланса .

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

K + 2 S -2 + 2K + Mn +7 O -2 4 = 2K + 2 Mn +6 O -2 4 + S 0

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

S -2 -2e = S 0

Mn +7 + 1e = Mn +6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс . Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса . Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций .

Самый очевидный фактор, определяющий — среда раствора реакции — . Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

  • окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO 4 , где Mn +7 в кислой среде восстанавливается до Mn +2 , а в щелочной — до Mn +6);
  • окислительная активность усиливается в более щелочной среде , и окислитель восстанавливается глубже (например, нитрат калия KNO 3 , где N +5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N -3);
  • либо окислитель практически не подвержен изменениям среды.

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

Также на направление протекания ОВР влияет природа реагирующих веществ. Например , при взаимодействии азотной кислоты HNO 3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстановливается азот N +5 .

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества . Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

В кислой среде восстановление происходит более глубоко, до Mn 2+ . Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны . В нейтральном растворе марганец восстанавливается до степени окисления +4 , с образованием амфотерного оксида MnO 2 коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6 . Соединения марганца +6 проявляют кислотные свойства, в щелочной среде образуют соли — манганаты . Манганаты придают раствору зеленую окраску .

Рассмотрим взаимодействие перманганата калия KMnO 4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S 0 .

5 K 2 S + 2 KMnO 4 + 8 H 2 SO 4 = 5 S + 2 MnSO 4 + 6 K 2 SO 4 + 8 H 2 O,

3 K 2 S + 2 KMnO 4 + 4 H 2 O = 2 MnO 2 ↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

K 2 S + 2 KMnO 4 –(KOH)= 2 K 2 MnO 4 + S↓

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

  • неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк — до +5 ;
  • неметаллы с промежуточной степенью окисления до высшей степени окисления;
  • активные металлы стабильной положительной степенью окисления металла.

KMnO 4 + неМе (низшая с.о.) = неМе 0 + другие продукты

KMnO 4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO 4 + Ме 0 = Ме (стабильная с.о.) + др. продукты

KMnO 4 + P -3 , As -3 = P +5 , As +5 + др. продукты

Схема восстановления хроматов/бихроматов

Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K 2 CrO 4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K 2 Cr 2 O 7) — соли, устойчивые в кислой среде .

Восстанавливаются соединения хрома (VI) до соединений хрома (III) . Соединения хрома Cr +3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH) 3 , и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K 3 .

Соединения хрома VI окисляют:

  • неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк – до +5 ;
  • неметаллы в промежуточной степени окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты

Разложение нитратов

Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель . Такой азот может окислять кислород (О -2). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O 2 .

В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния ), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород .

Например :

2NaNO 3 → 2NaNO 2 + O 2 .

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь) , то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород . Оксид металла образует также при разложении нитрат лития .

Например , разложение нитрата цинка :

2Zn(NO 3) 2 → 2ZnО + 4NO 2 + O 2 .

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe 2 O 3 , Al 2 O 3 и др.).

Ионы металлов , расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N +5 , участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород .

Например , разложение нитрата серебра :

2AgNO 3 → 2Ag + 2NO 2 + O 2 .

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония :

В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.

При нагревании нитрат аммония разлагается . При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:

NH 4 NO 3 → N 2 O + 2H 2 O

Это пример реакции контрдиспропорционирования .

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :

2NH 4 NO 3 → 2N 2 + O 2 + 4H 2 O

При разложении нитрита аммония NH 4 NO 2 также происходит контрдиспропорционирование.

Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N +3 и восстановителя N -3

NH 4 NO 2 → N 2 + 2H 2 O

Термическое разложение нитрата марганца (II) сопровождается окислением металла:

Mn(NO 3) 2 = MnO 2 + 2NO 2

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

2Fe(NO 3) 2 → 2FeO + 4NO 2 + O 2 при 60°C
4Fe(NO 3) 2 → 2Fe 2 O 3 + 8NO 2 + O 2 при >60°C

Нитрат никеля (II) разлагается до нитрита при нагревании.

Окислительные свойства азотной кислоты

Азотная кислота HNO 3 при взаимодействии с металлами практически никогда не образует водород , в отличие от большинства минеральных кислот.

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H 2 O

Азотная кислота при восстановлении может переходить в оксид азота (IV) NO 2 (N +4); оксид азота (II) NO (N +2); оксид азота (I) N 2 O («веселящий газ»); молекулярный азот N 2 ; нитрат аммония NH 4 NO 3 . Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты . При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются .

Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:

  • при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH 4 NO 3 ;

Например , взаимодействие цинка с очень разбавленной азотной кислотой:

4Zn + 10HNO 3 = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

  • концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe . При нагревании или разбавлении раствора реакция идет;

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

  • азотная кислота не реагирует с металлами платиновой подгруппы золотом Au, платиной Pt, и палладием Pd;
  • при взаимодействии концентрированной кислоты с неактивными металлами и металлами средней активности азотная кислота восстанавливается до оксида азота (IV) NO 2 ;

Например , окисление меди концентрированной азотной кислотой:

Cu+ 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

  • при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота (I) N 2 O ;

Например , окисление натрия концентрированной азотной кислотой :

Na+ 10HNO 3 = 8NaNO 3 + N 2 O + 5H 2 O

  • при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO ;
  • при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо оксид азота (II) NO, либо оксид азота N 2 O, либо молекулярный азот N 2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
  • при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N 2 .

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

NO 2 ; NO; N 2 O; N 2 ; NH 4 NO 3

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Например , взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.

Взаимодействие металлов с серной кислотой

Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода . Окислителем здесь выступают ионы H + , которые восстанавливаются до молекулярного водорода H 2 . При этом металлы окисляются, как правило, до минимальной степени окисления.

Например :

Fe + H 2 SO 4(разб) = FeSO 4 + H 2

взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H 2 SO 4 (конц) + металл = соль металла + продукт восстановления серы (SO 2 , S, H 2 S) + вода

При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S +4 O 2 , молекулярная сера S либо сероводород H 2 S -2 , в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;

3. С неактивными металлами концентированная серная кислота восстанавливается до оксида серы (IV).

Например , медь окисляется концентрированной серной кислотой :

Cu 0 + 2H 2 S +6 O 4(конц) = Cu +2 SO 4 + S +4 O 2 + 2H 2 O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H 2 S 2- (в зависимости от температуры, степени измельчения и активности металла).

Например , взаимодействие концентрированной серной кислоты с цинком :

8Na 0 + 5H 2 S +6 O 4(конц) → 4Na 2 + SO 4 + H 2 S — 2 + 4H 2 O

Пероксид водорода

Пероксид водорода H 2 O 2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.

При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:

S +4 O 2 + H 2 O 2 -1 → H 2 S +6 O 4 -2

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O 2 . Например :

2KMn +7 O 4 + 5H 2 O 2 -1 + 3H 2 SO 4 → 5O 2 0 + 2Mn +2 SO 4 + K 2 SO 4 + 8H 2 O

Многие вещества обладают особыми свойствами, которые в химии принято называть окислительными или восстановительными.

Одни химические вещества проявляют свойства окислителей, другие - восстановителей, при этом некоторые соединения могут проявлять те и другие свойства одновременно (например – перекись водорода Н 2 О 2).

Что же такое окислитель и восстановитель, окисление и восстановление?

Окислительно-восстановительные свойства вещества связаны с процессом отдачи и приема электронов атомами, ионами или молекулами.

Окислитель - это вещество, которое в ходе реакции принимает электроны, т. е. восстанавливается; восстановитель - отдает электроны, т. е. окисляется. Процессы передачи электронов от одних веществ к другим, обычно называют окислительно-восстановительными реакциями.

Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами

Окислительно-восстановительные реакции, или сокращенно ОВР, являются одной из основ предмета химии, так как описывают взаимодействие отдельных химических элементов друг с другом. Как следует из названия данных реакций, в них участвуют как минимум два различных химических вещества одно из которых выступает в качестве окислителя, а другое – восстановителя. Очевидно, что очень важно уметь отличать и определять их в различных химических реакциях.

Как определить окислитель и восстановитель
Основная сложность в определении окислителя и восстановителя в химических реакциях заключается в том, что одни и те же вещества в разных случаях могут быть как окислителями, так и восстановителями. Чтобы научиться правильно определять роль конкретного химического элемента в реакции нужно четко уяснить следующие базовые понятия.
  1. Окислением называют процесс отдачи электронов с внешнего электронного слоя химического элемента. В свою очередь окислителем будет атом, молекула или ион, которые принимают электроны и тем самым понижают степень своего окисления, что есть восстанавливаются . После химической реакции взаимодействия с другим веществом окислитель всегда приобретает положительный заряд.
  2. Восстановлением называют процесс присоединения электронов на внешний электронный слой химического элемента. Восстановителем будет атом, молекула или ион, которые отдают свои электроны и тем самым повышают степень своего окисления, то есть окисляются . После химической реакции взаимодействия с другим веществом восстановитель всегда приобретает положительный заряд.
  3. Проще говоря окислитель – это вещество, которое «отбирает» электроны, а восстановитель – вещество, которое отдает их окислителю. Определить кто в окислительно-восстановительной реакции выполняет роль окислителя, кто восстановителя и в каких случаях окислитель становится восстановителем и наоборот можно, зная типичное поведение в химических реакциях отдельных элементов.
  4. Типичными восстановителями являются металлы и водород: Fe, K, Ca, Cu, Mg, Na, Zn, H). Чем меньше они ионизироаны, тем больше их восстановительные свойства. Например, частично окислившееся железо, отдавшее один электрон и имеющее заряд +1, сможет отдать на один электрон меньше по сравнению с «чистым» железом. Также восстановителями могут быть соединения химических элементов в низшей степени окисления, у которых заполнены все свободные орбитали и которые могут только отдавать электроны, например аммиак NH 3 , сероводород H 2 S, бромоводород HBr, йодоводород HI, хлороводород HCl.
  5. Типичными окислителями являются многие неметаллы (F, Cl, I, O, Br). Также окислителями могут выступать металлы, имеющие высокую степень окисления (Fe +3 , Sn +4 , Mn +4), также некоторые соединения элементов в высокой степени окисления: перманганат калия KMnO 4 , серная кислота Н 2 SO 4 , азотная кислота HNO 3 , оксид меди CuO, хлорид железа FeCl 3 .
  6. Химические соединения в неполных или промежуточных степенях окисления, например одноосновная азотная кислота HNO 2 , пероксид водорода H 2 O 2 , сернистая кислота H 2 SO 3 могут проявлять как окислительные, так и восстановительные свойства в зависимости от окислительно-восстановительных свойств участвующего во взаимодействии второго реагента.
Определим окислитель и восстановитель на примере простой реакции взаимодействия взаимодействия натрия с кислородом.

Ка следует из данного примера один атом натрия отдает одному атому кислорода свой электрон. Следовательно, натрий является восстановителем, а кислород окислителем. При этом натрий окислится полностью, так как отдаст максимально возможное количество электронов, а атом кислорода будет восстановлен не полностью, так как сможет принять еще один электрон от другого атома кислорода.

Химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

Окисление - это процесс отдачи электронов атомом, молекулой или ионом. Если атом отдает свои электроны, то он приобретает положительный заряд, например:

Если отрицательно заряженный ион (заряд -1), например , отдает 1 электрон, то он становится нейтральным атомом:

Если положительно заряженный ион или атом отдает электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:

Восстановление - это процесс присоединения электронов атомом, молекулой или ионом.

Если атом присоединяет электроны, то он превращается в отрицательно заряженный ион:

Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается, например:

или он может перейти в нейтральный атом:

Окислителем является атом, молекула или ион, принимающий электроны. Восстановителем является атом, молекула или ион, отдающий электроны.

Окислитель в процессе реакции восстанавливается, а восстановитель - окисляется.

Следует помнить, что рассмотрение окисления (восстановления) как процесса отдачи (и принятия) электронов атомами или ионами не всегда отражает истинное положение, так как во многих случаях происходит не полный перенос электронов, а только смещение электронного облака от одного атома к другому.

Однако для составления уравнений окислительно-восстановительных реакций не имеет существенного значения, какая связь при этом образуется - ионная или ковалентная. Поэтому для простоты будем говорить о присоединении или отдаче электронов независимо от типа связи.

Составление уравнений окислительно-восстановительных реакций и подбор коэффициентов. При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов.

Как правило, коэффициенты подбирают, используя либо метод электронного баланса, либо метод электронно-ионного баланса (иногда последний называют методом полуреакций).

В качестве примера составления уравнений окислительно-восстановительных реакций рассмотрим процесс окисления пирита концентрированной азотной кислотой:

Прежде всего, определим продукты реакции. является сильным окислителем, поэтому сера будет окисляться до максимальной степени окисления а железо - до , при этом может восстанавливаться до или . Мы выберем .

Где будет находиться (в левой или правой части), мы пока не знаем.

1. Применим сначала метод электронно-ионного баланса. В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. - При составлении уравнений процессов окисления и восстановления для уравнивания числа атомов водорода и кислорода вводят (в зависимости от среды) или молекулы воды и ионы водорода (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная). Соответственно и в получаемых продуктах в правой части электронно-ионного уравнения будут находиться ионы водорода и молекулы воды (кислая среда) или гидроксид-ионы и молекулы воды (щелочная среда).

Таким образом, при написании электронно-ионных уравнений нужно исходить из состава ионов, действительно имеющихся в растворе. Кроме того, как и при составлении сокращенных ионных уравнений, вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

Рассмотрим для нашего случая полуреакцию окисления.

Молекула превращается в ион полностью диссоциирует на ионы, гидролизом пренебрегаем) и два иона (диссоциация ):

Для того чтобы уравнять кислород, в левую часть добавим 8 молекул а в правую - 16 ионов (среда кислая!):

Заряд левой части равен 0, заряд правой поэтому должен отдать 15 электронов:

Рассмотрим теперь полуреакцию восстановления нитрат-иона:

Необходимо отнять у атома О. Для этого к левой части добавим 4 иона (кислая среда), а к правой - 2 молекулы

Для уравнивания заряда к левой части (заряд ) добавим 3 электрона:

Окончательно имеем:

Сократив обе части на получим сокращенное ионное уравнение окислительно-восстановительной реакции:

Добавив в обе части уравнения соответствующее количество ионов находим молекулярное уравнение реакции:

Обратите внимание, что для определения количества отданных и принятых электронов нам ни разу не пришлось определять степень окисления элементов. Кроме того, мы учли влияние среды и автоматически определили, что находится в правой части уравнения. Несомненно то, что этот метод гораздо больше соответствует химическому смыслу, чем стандартный метод электронного баланса, хотя последний несколько проще для понимания.

2. Уравняем данную реакцию методом электронного баланса. Процесс восстановления описывается просто:

Сложнее составить схему окисления, поскольку окисляются сразу 2 элемента - Fe и S. Можно приписать железу степень окисления сере и учесть, что на 1 атом Fe приходится два атома S:

Можно, однако, обойтись без определения степеней окисления и записать схему, напоминающую схему (7.1):

Правая часть имеет заряд +15, левая - 0, поэтому должен отдать 15 электронов. Записываем общий баланс:

5 молекул идут на окисление , и еще 3 молекулы необходимы для образования

Чтобы уравнять водород и кислород, добавляем в правую часть 2 молекулы :

Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Рассмотрим, например, процесс окисления этилена, происходящий при пропускании его через водный раствор перманганата калия. В результате этилен окисляется до этиленгликоля , а перманганат восстанавливается до оксида марганца (IV), кроме того, как будет очевидно из итогового уравнения баланса, справа образуется также гидроксид калия:

После проведения необходимых сокращений подобных членов, записываем уравнение в окончательном молекулярном виде

Количественная характеристика окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов. Возможность протекания любой окислительно-восстановительной реакции в реальных условиях обусловлена рядом причин: температурой, природой окислителя и восстановителя, кислотностью среды, концентрацией веществ, участвующих в реакции, и т.д.

Учесть все эти факторы бывает трудно, но, помня о том, что любая окислительно-восстановительная реакция протекает с переносом электронов от восстановителя к окислителю, можно установить критерий возможности протекания такой реакции.

Количественной характеристикой окислительно-восста-новительных процессов являются нормальные окислительно-восстановительные потенциалы окислителей и восстановителей (или стандартные потенциалы электродов).

Чтобы понять физико-химический смысл таких потенциалов, необходимо проанализировать так называемые электрохимические процессы.

Химические процессы, сопровождающиеся возникновением электрического тока или вызываемые им, называются электрохимическими.

Чтобы понять природу электрохимических процессов, обратимся к рассмотрению нескольких достаточно простых ситуаций. Представим себе металлическую пластинку, погруженную в воду. Под действием полярных молекул воды ионы металла отрываются от поверхности пластинки и гидратированными переходят в жидкую фазу. Последняя при этом заряжается положительно, а на металлической пластинке появляется избыток электронов. Чем дальше протекает процесс, тем больше становится заряд как пластинки, так и жидкой фазы.

Благодаря электростатическому притяжению катионов раствора и избыточных электронов металла на границе раздела фаз возникает так называемый двойной электрический слой, который тормозит дальнейший переход ионов металла в жидкую фазу. Наконец наступает момент, когда между раствором и металлической пластинкой устанавливается равновесие, которое можно выразить уравнением:

или с учетом гидратации ионов в растворе:

Состояние этого равновесия зависит от природы металла, концентрации его ионов в растворе, от температуры и давления.

При погружении металла не в воду, а в раствор соли этого металла равновесие в соответствии с принципом Ле Шателье смещается влево и тем больше, чем выше концентрация ионов металла в растворе. Активные металлы, ионы которых обладают хорошей способностью переходить в раствор, будут в этом случае заряжаться отрицательно, хотя в меньшей степени, чем в чистой воде.

Равновесие (7.2) можно сместить вправо, если тем или иным способом удалять электроны из металла. Это приведет к растворению металлической пластинки. Наоборот, если к металлической пластинке подводить электроны извне, то на ней будет происходить осаждение ионов из раствора.

Как уже отмечалось, при погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающую между металлом и окружающей его жидкой фазой, называют электродным потенциалом. Этот потенциал является характеристикой.окислительно-восстановительной способности металла в виде твердой фазы.

Заметим, что у изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал - это энергия, необходимая для отрыва электрона от изолированного атома.

Абсолютное значение электродного потенциала нельзя измерить непосредственно. Вместе с тем, не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл-раствор. Такие пары называют полу элементами. Условились определять электродные потенциалы металлов по отношению к так называемому стандартному водородному электроду, потенциал которого произвольно принят за ноль. Стандартный водородный электрод состоит из специально приготовленной платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов водорода и омываемой струей газообразного во дорода под давлением Па, при температуре

Возникновение потенциала на стандартном водородном электроде можио представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:

Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:

Суммарный процесс выражается уравнением:

Платина не принимает участия в окислительно-восстановительном процессе, а является лишь носителем атомарного водорода.

Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при и характеризует стандартный электродный потенциал металла, обозначаемый обычно как .

В таблице 7.1 представлены значения стандартных электродных потенциалов некоторых металлов. Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак «-», а знаком «+» отмечены стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов:

Ряд напряжений характеризует химические свойства металлов:

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в электрохимическом ряду напряжений металлов после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т.е. находящиеся в электрохимическом ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре. Кроме того, нужно иметь в виду, что указанные в таблице стандартные электродные потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Это может нарушать некоторые ожидаемые закономерности в расположении металлов в электрохимическом ряду напряжений металлов. Например, электрохимический ряд напряжений металлов начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

Одновременно в таблице 7.1 приведены стандартные окислительно-восстановительные потенциалы которые измерены для неметаллических систем типа (7.3), находящихся в равновесном состоянии по отношению к нормальному водородному электроду.

В таблице приведены полуреакции восстановления следующего общего вида:

Как и в случае определения значения металлов, значения неметаллов измеряются при температуре 25 °С и при концентрации всех атомных и молекулярных частиц, участвующих в равновесии, равной 1 моль/л.

Таблица 7.1. Стандартные окислительно-восстановительные потенциалы при 25 °С (298 К)

(см. скан)

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Так, все полуреакции окисления галогенид-ионов до свободных галогенов

могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца (IV) или перманганата калия . При использовании дихромата калия удается осуществить только реакции (7.5) и (7.6). Наконец, использование в качестве окислителя азотной кислоты позволяет осуществить только полуреакцию с участием иодид-ионов (7.6).

Таким образом, количественным критерием оценки возможности протекания той или иной окислительновосстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.