Как научиться писать химические реакции. Как составить уравнение химической реакции: последовательность действий

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH - = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
  • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


Давайте тренироваться!

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

Химическим уравнением можно назвать визуализацию химической реакции с помощью знаков математики и химических формул. Такое действие является отображением какой-либо реакции, в процессе которой появляются новые вещества.

Химические задания: виды

Химическое уравнение - это последовательность химических реакций. Они основываются на законе сохранения массы каких-либо веществ. Существует всего два вида реакций:

  • Соединения - к ним относятся (происходит замена атомов сложных элементов атомами простых реагентов), обмена (замещение составными частями двух сложных веществ), нейтрализации (реакция кислот с основаниями, образование соли и воды).
  • Разложения - образование двух и более сложных или простых веществ из одного сложного, но состав их более простой.

Химические реакции также можно разделить на типы: экзотермические (происходят с выделением теплоты) и эндотермические (поглощение теплоты).

Этот вопрос волнует многих учащихся. Мы предлегаем несколько простых советов, которые подскажут, как научиться решать химические уравнения:

  • Желание понять и освоить. Нельзя отступать от своей цели.
  • Теоретические знания. Без них невозможно составить даже элементарную формулу соединения.
  • Правильность записи химической задачи - даже малейшая ошибка в условии сведет к нулю все ваши усилия в ее решении.

Желательно, чтобы сам процесс решения химических уравнений был для вас увлекательным. Тогда химические уравнения (как решать их и какие моменты нужно запомнить, мы разберем в этой статье) перестанут быть для вас проблемными.

Задачи, которые решаются с использованием уравнений химических реакций

К таким задачам относятся:

  • Нахождение массы компонента по данной массе другого реагента.
  • Задания по комбинации «масса-моль».
  • Расчеты по комбинации «объем-моль».
  • Примеры с применением термина «избыток».
  • Расчеты с использованием реагентов, один из которых не лишен примесей.
  • Задачи на распад результата реакции и на производственные потери.
  • Задачи на поиск формулы.
  • Задачи, в которых реагенты предоставлены в виде растворов.
  • Задачи, содержащие смеси.

Каждый из этих видов задач включает в себя несколько подтипов, которые обычно подробно рассматриваются еще на первых школьных уроках химии.

Химические уравнения: как решать

Существует алгоритм, который помогает справиться с практически любым заданием из этой непростой науки. Чтобы понять, как правильно решать химические уравнения, нужно придерживаться определенной закономерности:

  • При записи уравнения реакции не забывать расставлять коэффициенты.
  • Определение способа, с помощью которого можно найти неизвестные данные.
  • Правильность применения в выбранной формуле пропорций или использование понятия «количество вещества».
  • Обратить внимание на единицы измерений.

В конце важно обязательно проверить задачу. В процессе решения вы могли допустить элементарную ошибку, которая повлияла на результат решения.

Основные правила составления химических уравнений

Если придерживаться правильной последовательности, то вопрос о том, что такое химические уравнения, как решать их, не будет вас волновать:

  • Формулы веществ, которые вступают в реакцию (реагенты), записываются в левой части уравнения.
  • Формулы веществ, которые образуются в результате реакции, записываются уже в правой части уравнения.

Составление уравнения реакции основывается на законе сохранения массы веществ. Следовательно, обе части уравнения должны быть равны, т. е. с одинаковым числом атомов. Достичь этого можно при условии правильной расстановки коэффициентов перед формулами веществ.

Расстановка коэффициентов в химическом уравнении

Алгоритм расстановки коэффициентов таков:

  • Подсчет в левой и правой части уравнения атомов каждого элемента.
  • Определение меняющегося количества атомов у элемента. Также нужно найти Н.О.К.
  • Получение коэффициентов достигается путем деления Н.О.К. на индексы. Обязательно проставить данные цифры перед формулами.
  • Следующим шагом является пересчет количества атомов. Иногда возникает необходимость в повторении действия.

Уравнивание частей химической реакции происходит с помощью коэффициентов. Расчет индексов производится через валентность.

Для успешного составления и решения химических уравнений необходимо учитывать физические свойства вещества, такие как объем, плотность, масса. Также нужно знать состояние реагирующей системы (концентрация, температура, давление), разбираться в единицах измерения данных величин.

Для понимания вопроса о том, что такое химические уравнения, как решать их, необходимо использование основных законов и понятий этой науки. Чтобы успешно вычислять подобные задачи, необходимо также вспомнить или освоить навыки математических операций, уметь совершать действия с числами. Надеемся, с нашими советами вам будет легче справляться с химическими уравнениями.

Поговорим о том, как составить химическое уравнение, ведь именно они являются основными элементами данной дисциплины. Благодаря глубокому осознанию всех закономерностей взаимодействий и веществ, можно управлять ими, применять их в различных сферах деятельности.

Теоретические особенности

Составление химических уравнений - важный и ответственный этап, рассматриваемый в восьмом классе общеобразовательных школ. Что должно предшествовать данному этапу? Прежде чем педагог расскажет своим воспитанникам о том, как составить химическое уравнение, важно познакомить школьников с термином «валентность», научить их определять данную величину у металлов и неметаллов, пользуясь таблицей элементов Менделеева.

Составление бинарных формул по валентности

Для того чтобы понять, как составить химическое уравнение по валентности, для начала нужно научиться составлять формулы соединений, состоящих из двух элементов, пользуясь валентностью. Предлагаем алгоритм, который поможет справиться с поставленной задачей. Например, необходимо составить формулу оксида натрия.

Сначала важно учесть, что тот химический элемент, который в названии упоминается последним, в формуле должен располагаться на первом месте. В нашем случае первым будет записываться в формуле натрий, вторым кислород. Напомним, что оксидами называют бинарные соединения, в которых последним (вторым) элементом обязательно должен быть кислород со степенью окисления -2 (валентностью 2). Далее по таблице Менделеева необходимо определить валентности каждого из двух элементов. Для этого используем определенные правила.

Так как натрий - металл, который располагается в главной подгруппе 1 группы, его валентность является неизменной величиной, она равна I.

Кислород - это неметалл, поскольку в оксиде он стоит последним, для определения его валентности мы из восьми (число групп) вычитаем 6 (группу, в которой находится кислород), получаем, что валентность кислорода равна II.

Между определенными валентностями находим наименьшее общее кратное, затем делим его на валентность каждого из элементов, получаем их индексы. Записываем готовую формулу Na 2 O.

Инструкция по составлению уравнения

А теперь подробнее поговорим о том, как составить химическое уравнение. Сначала рассмотрим теоретические моменты, затем перейдем к конкретным примерам. Итак, составление химических уравнений предполагает определенный порядок действий.

  • 1-й этап. Прочитав предложенное задание, необходимо определить, какие именно химические вещества должны присутствовать в левой части уравнения. Между исходными компонентами ставится знак «+».
  • 2-й этап. После знака равенства необходимо составить формулу продукта реакции. При выполнении подобных действий потребуется алгоритм составления формул бинарных соединений, рассмотренный нами выше.
  • 3-й этап. Проверяем количество атомов каждого элемента до и после химического взаимодействия, в случае необходимости ставим дополнительные коэффициенты перед формулами.

Пример реакции горения

Попробуем разобраться в том, как составить химическое уравнение горения магния, пользуясь алгоритмом. В левой части уравнения записываем через сумму магний и кислород. Не забываем о том, что кислород является двухатомной молекулой, поэтому у него необходимо поставить индекс 2. После знака равенства составляем формулу получаемого после реакции продукта. Им будет в котором первым записан магний, а вторым в формуле поставим кислород. Далее по таблице химических элементов определяем валентности. Магний, находящийся во 2 группе (главной подгруппе), имеет постоянную валентность II, у кислорода путем вычитания 8 - 6 также получаем валентность II.

Запись процесса будет иметь вид: Mg+O 2 =MgO.

Для того чтобы уравнение соответствовало закону сохранения массы веществ, необходимо расставить коэффициенты. Сначала проверяем количество кислорода до реакции, после завершения процесса. Так как было 2 атома кислорода, а образовался всего один, в правой части перед формулой оксида магния необходимо добавить коэффициент 2. Далее считаем число атомов магния до и после процесса. В результате взаимодействия получилось 2 магния, следовательно, в левой части перед простым веществом магнием также необходим коэффициент 2.

Итоговый вид реакции: 2Mg+O 2 =2MgO.

Пример реакции замещения

Любой конспект по химии содержит описание разных видов взаимодействий.

В отличие от соединения, в замещении и в левой, и в правой части уравнения будет два вещества. Допустим, необходимо написать реакцию взаимодействия между цинком и Алгоритм написания используем стандартный. Сначала в левой части через сумму пишем цинк и соляную кислоту, в правой части составляем формулы получаемых продуктов реакции. Так как в электрохимическом ряду напряжений металлов цинк располагается до водорода, в данном процессе он вытесняет из кислоты молекулярный водород, образует хлорид цинка. В результате получаем следующую запись: Zn+HCL=ZnCl 2 +H 2 .

Теперь переходим к уравниванию количества атомов каждого элемента. Так как в левой части хлора был один атом, а после взаимодействия их стало два, перед формулой соляной кислоты необходимо поставить коэффициент 2.

В итоге получаем готовое уравнение реакции, соответствующее закону сохранения массы веществ: Zn+2HCL=ZnCl 2 +H 2 .

Заключение

Типичный конспект по химии обязательно содержит несколько химических превращений. Ни один раздел этой науки не ограничивается простым словесным описанием превращений, процессов растворения, выпаривания, обязательно все подтверждается уравнениями. Специфика химии заключается в том, что с все процессы, которые происходят между разными неорганическими либо органическими веществами, можно описать с помощью коэффициентов, индексов.

Чем еще отличается от других наук химия? Химические уравнения помогают не только описывать происходящие превращения, но и проводить по ним количественные вычисления, благодаря которым можно осуществлять лабораторное и промышленное получение разных веществ.

Схема химической реакции.

Существует несколько способов записи химических реакций. Co «словесной» схемой реакции вы ознакомились в § 13.

Приводим еще один пример:

сера + кислород -> сернистый газ.

Ломоносов и Лавуазье открыли закон сохранения массы веществ при химической реакции. Он формулируется так:

Объясним, почему массы пепла и прокаленной меди отличаются от масс бумаги и меди до ее нагревания.

В процессе горения бумаги принимает участие кислород, который содержится в воздухе (рис. 48, а).

Следовательно, в реакцию вступают два вещества. Кроме пепла, образуются углекислый газ и вода (в виде пара), которые попадают в воздух и рассеиваются.



Рис. 48. Реакции бумаги (а) и меди (б) с кислородом

Антуан-Лоран Лавуазье (1743-1794)

Выдающийся французский химик, один из основателей научной химии. Академик Парижской академии наук. Ввел в химию количественные (точные) методы исследования. Экспериментально определил состав воздуха и доказал, что горение - это реакция вещества с кислородом, а вода - соединение Гидрогена с Оксигеном (1774- 1777).

Составил первую таблицу простых веществ (1789), предложив фактически классификацию химических элементов. Независимо от М. В. Ломоносова открыл закон сохранения массы веществ при химических реакциях.


Рис. 49. Опыт, подтверждающий закон Ломоносова - Лавуазье:а - начало опыта; б - окончание опыта

Их масса превышает массу кислорода. Поэтому масса пепла меньше массы бумаги.

При нагревании меди кислород воздуха «соединяется» с ней (рис. 48, б). Металл превращается в вещество черного цвета (его формула - CuO, а на­ звание - купрум(П) оксид). Очевидно, что масса продукта реакции должна превышать массу меди.

Прокомментируйте опыт, изображенный на рисунке 49, и сделайте вывод.

Закон как форма научных знаний.

Открытие законов в химии, физике, других науках происходит после проведения учеными многих экспериментов и анализа полученных результатов.

Закон - это обобщение объективных, независимых от человека связей между явлениями, свойствами и т. д.

Закон сохранения массы веществ при химической реакции - важнейший закон химии. Он распространяется на все превращения веществ, которые происходят и в лаборатории, и в природе.

Химические законы дают возможность прогнозировать свойства веществ и протекание химических реакций, регулировать процессы в химической технологии.

Для того чтобы объяснить закон, выдвигают гипотезы, которые проверяют с помощью соответствующих экспериментов. Если одна из гипотез подтверждается, на ее основе создают теорию. В старших классах вы ознакомитесь с несколькими теориями, которые разработали ученые-химики.

Общая масса веществ при химической реакции не изменяется потому, что атомы химических элементов во время реакции не возникают и не исчезают, а происходит только их перегруппировка. Другими словами,
количество атомов каждого элемента до реакции равно количеству его атомов после реакции. На это указывают схемы реакций, приведенные в начале параграфа. Заменим в них стрелки между левыми и правыми частями на знаки равенства:

Такие записи называют химическими уравнениями.

Химическое уравнение - это запись химической реакции с помощью формул реагентов и продуктов, которая согласуется с законом сохранения массы веществ.

Существует много схем реакций^ которые не соответствуют закону Ломоносова - Лавуазье.

Например, схема реакции образования воды:

H 2 + O 2 -> H 2 O.

В обеих частях схемы содержится одинаковое количество атомов Гидрогена, но разное количество атомов Оксигена.

Превратим эту схему в химическое уравнение.

Для того чтобы в правой части было 2 атома Оксигена, поставим перед формулой воды коэффициент 2:

H 2 + O 2 -> H 2 O.

Теперь справа стало четыре атома Гидрогена. Чтобы такое же количество атомов Гидрогена было и в левой части, запишем перед формулой водорода коэффициент 2. Получаем химическое уравнение:

2Н 2 + O 2 = 2Н 2 0.

Таким образом, чтобы превратить схему реак ции в химическое уравнение, нужно подобрать коэффициенты для каждого вещества (в случае необходимости), записать их перед химическими формулами и заменить стрелку на знак равенства.

Возможно, кто-то из вас составит такое уравнение: 4Н 2 + 20 2 = 4Н 2 0. В нем левая и правая части содержат одинаковые количества атомов каждого элемента, но все коэффициенты можно уменьшить, разделив на 2. Это и следует сделать.

Это интересно

Химическое уравнение имеет много общего с математическим.

Ниже представлены различные способы записи рассмотренной реакции.

Превратите схему реакции Cu + O 2 -> CuO в химическое уравнение.

Выполним более сложное задание: превратим в химическое уравнение схему реакции

В левой части схемы - I атом Алюминия, а в правой - 2. Поставим перед формулой металла коэффициент 2:

Атомов Сульфура справа в три раза больше, чем слева. Запишем в левой части перед формулой соединения Сульфура коэффициент 3:

Теперь в левой части количество атомов Гидрогена равно 3 2 = 6, а в правой - только 2. Для того чтобы и справа их было 6, поставим перед формулой водорода коэффициент 3 (6: 2 = 3):

Сопоставим количество атомов Оксигена в обеих частях схемы. Они одинаковы: 3 4 = 4 * 3. Заменим стрелку на знак равенства:

Выводы

Химические реакции записывают с помощью схем реакций и химических уравнений.

Схема реакции содержит формулы реагентов и продуктов, а химическое уравнение - еще и коэффициенты.

Химическое уравнение согласуется с законом сохранения массы веществ Ломоносова - Лавуазье:

масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции.

Атомы химических элементов во время реакций не появляются и не исчезают, а происходит лишь их перегруппировка.

?
105. Чем отличается химическое уравнение от схемы реакции?

106. Расставьте пропущенные коэффициенты в записях реакций:

107. Превратите в химические уравнения такие схемы реакций:

108. Составьте формулы продуктов реакций и соответствующие химические уравнения:

109. Вместо точек запишите формулы простых веществ и составьте хими­ ческие уравнения:

Примите во внимание, что бор и углерод состоят из атомов; фтор, хлор, водород и кислород - из двухатомных молекул, а фосфор (белый) - из четырехатомных молекул.

110. Прокомментируйте схемы реакций и превратите их в химические уравнения:

111. Какая масса негашеной извести образовалась при длительном прока­ ливании 25 г мела, если известно, что выделилось 11 г углекислого газа?

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Основным предметом постижения в химии являются реакции между разными химическими элементами и веществами. Большое осознавание обоснованностей взаимодействия веществ и процессов в химических реакциях дает вероятность руководить ими и применять в своих целях. Химическое уравнение – это метод выражения химической реакции, в котором записаны формулы начальных веществ и продуктов, показатели, показывающие число молекул всякого вещества. Химические реакции делятся на реакции соединения, замещения, разложения и обмена. Также среди них дозволено выделить окислительно-восстановительные, ионные, обратимые и необратимые, экзогенные и т.п.

Инструкция

1. Определите какие вещества взаимодействуют друг с ином в вашей реакции. Запишите их в левой части уравнения. Для примера, разглядите химическую реакцию между алюминием и серной кислотой. Расположите реагенты слева: Al+H2SO4Далее ставьте знак «равно», как и в математическом уравнении. В химии вы можете встретить стрелку, указывающую направо, либо же две противоположно направленные стрелки, «знак обратимости».В итоге взаимодействия металла с кислотой образуются соль и водород. Продукты реакции запишите позже знака равенства, справа.Al+H2SO4=Al2(SO4)3+H2Получилась схема реакции.

2. Дабы составить химическое уравнение, вам нужно обнаружить показатели. В левой части ранее полученной схемы в состав серной кислоты входят атомы водорода, серы и кислорода в соотношении 2:1:4, в правой части содержится 3 атома серы и 12 атомов кислорода в составе соли и 2 атома водорода в молекуле газа Н2. В левой части отношение этих 3 элементов равно 2:3:12.

3. Дабы уравнять число атомов серы и кислорода в составе сульфата алюминия(III), поставьте в левой части уравнения перед кислотой показатель 3. Сейчас в левой части шесть атомов водорода. Дабы уравнять число элементов водорода, поставьте показатель 3 перед ним в правой части. Сейчас соотношение атомов в обоих частях равно 2:1:6.

4. Осталось уравнять число алюминия. Потому что в составе соли содержится два атома металла, поставьте показатель 2 перед алюминием в левой части схемы.В итоге вы получите уравнение реакции данной схемы.2Al+3H2SO4=Al2(SO4)3+3H2

Реакцией именуется перевоплощение одних химических веществ в другие. А формула их записи с подмогой особых символов и есть уравнение этой реакции. Существуют разные типы химических взаимодействий, но правило записи их формул идентичен.

Вам понадобится

  • периодическая система химических элементов Д.И. Менделеева

Инструкция

1. В левой части уравнения записываются начальные вещества, которые вступают в реакцию. Они и именуются реагентами. Запись производится с подмогой особых символов, которыми обозначается всякое вещество. Между веществами-реагентами ставится знак «плюс».

2. В правой части уравнения записывается формула полученного одного либо нескольких веществ, которые именуются продуктами реакции. Между левой и правой частями уравнения взамен знака равенства ставится стрелка, которая указывает направление реакции.

3. Позже записи формул реагентов и продуктов реакции нужно расставить показатели уравнения реакции. Это делается для того, дабы, согласно закону сохранения массы вещества, число атомов одного и того же элемента в левой и правой частях уравнения оставалось идентичным.

4. Дабы верно расставить показатели, нужно разглядеть всякое из веществ, вступающих в реакцию. Для этого берется один из элементов и сопоставляется число его атомов слева и справа. Если оно различное, то необходимо обнаружить число, кратное числам, обозначающим число атомов данного вещества в левой и правой частях. После этого это число делится на число атомов вещества в соответствующей части уравнения, и получается показатель для всякой из его частей.

5. От того что показатель ставится перед формулой и относится ко каждом веществам в нее входящим, то дальнейшим шагом будет сравнение полученных данные с числом иного вещества, водящего в состав формулы. Это осуществляется по такой же схеме как и с первым элементом и с учетом теснее имеющегося показателя для каждой формулы.

6. Позже того как разобраны все элементы формулы, проводится окончательная проверка соответствия левой и правой частей. Тогда уравнение реакции дозволено считать законченным.

Видео по теме

Обратите внимание!
В уравнениях химических реакций невозможно переставлять местами левую и правую части. В отвратном случае получится схема вовсе иного процесса.

Полезный совет
Число атомов как отдельных веществ-реагентов так и веществ, входящих в состав продуктов реакции, определяется при помощи периодической системы химических элементов Д.И. Менделеева

Как неудивительна природа для человека: зимой она окутывает землю снежным пуховым одеялом, весной – раскрывает, будто хлопья поп корна, все живое, летом – буйствует буйством красок, осенью поджигает рыжим огнем растения… И только если вдуматься и присмотреться, дозволено увидеть, что стоят за всеми этими столь привычными изменениями трудные физические процессы и ХИМИЧЕСКИЕ РЕАКЦИИ. А дабы изучать все живое, нужно уметь решать химические уравнения. Основным требованием при уравнивании химических уравнений – познание закона сохранения числа вещества: 1)число вещества до реакции равно числу вещества позже реакции; 2)всеобщее число вещества до реакции равно всеобщему числу вещества позже реакции.

Инструкция

1. Дабы уравнять химический “пример” нужно исполнить несколько шагов.Записать уравнение реакции в всеобщем виде. Для этого неведомые показатели перед формулами веществ обозначить буквами латинского алфавита (х, y, z, t и тд). Пускай требуется уравнять реакцию соединения водорода и кислорода, в итоге которой получится вода. Перед молекулами водорода, кислорода и воды поставить латинские буквы (x,y,z) – показатели.

2. Для всякого элемента на основе физического равновесия составить математические уравнения и получить систему уравнений. В указанном примере для водорода слева взять 2х, потому что у него есть индекс “2”, справа – 2z, чай у него тоже есть индекс “2”., получается 2x=2z, отсель, x=z. Для кислорода слева взять 2y, потому что есть индекс “2”, справа – z, чай индекса нет, значит он равен единице, которую принято не писать. Получается, 2y=z, и z=0,5y.

Обратите внимание!
Если в уравнении участвует большее число химических элементов, то задание не усложняется а возрастает в объеме, чего не стоит пугаться.

Полезный совет
Дозволено уравнивать реакции и при помощи теории вероятности, применяя валентности химических элементов.

Совет 4: Как составить окислительно-восстановительную реакцию

Окислительно-восстановительные реакции – это реакции с изменением степеней окисления. Зачастую бывает так, что даны начальные вещества и нужно написать продукты их взаимодействия. Изредка одно и то же вещество может в различных средах давать разные финальные продукты.

Инструкция

1. В зависимости не только от среды протекания реакции, а также от степени окисления вещество ведет себя по-различному. Вещество в своей высшей степени окисления неизменно является окислителем, в низшей – восстановителем. Дабы сделать кислую среду традиционно применяют серную кислоту (H2SO4), реже – азотную(HNO3) и соляную(HCl). При необходимости сотворить щелочную среду применяем гидроксид натрия(NaOH) и гидроксид калия(KOH). Дальше разглядим некоторые примеры веществ.

2. Ион MnO4(-1). В кислой среде превращается в Mn(+2), бесцветный раствор. Если среда нейтральная, то образуется MnO2, выпадает бурый осадок. В щелочной среде получаем MnO4(+2), раствор зеленого цвета.

3. Пероксид водорода(H2O2). Если он является окислителем, т.е. принимает электроны, то в нейтральной и щелочной средах превращается по схеме: H2O2 + 2e = 2OH(-1). В кислой среде получим: H2O2 + 2H(+1) + 2e = 2H2O.При условии, что пероксид водорода восстановитель, т.е. отдает электроны, в кислой среде образуется O2, в щелочной – O2 + H2O. Если H2O2 попадает в среду с крепким окислителем, сам он будет являться восстановителем.

4. Ион Cr2O7 является окислителем, в кислой среде он превращается в 2Cr(+3), которые имеют зеленый цвет. Из иона Cr(+3) в присутствии гидроксид-ионов, т.е. в щелочной среде образуется CrO4(-2) желтого цвета.

5. Приведем пример составления реакции.KI + KMnO4 + H2SO4 -В данной реакции Mn находится в своей высшей степени окисления, т.е является окислителем, принимая электроны. Среда кислая, на это нам показывает серная кислота(H2SO4).Восстановителем тут является I(-1), он отдает электроны, повышая при этом свою степень окисления. Записываем продукты реакции: KI + KMnO4 + H2SO4 – MnSO4 + I2 + K2SO4 + H2O. Расставляем показатели способом электронного равновесия либо способом полуреакции, получаем: 10KI + 2KMnO4 + 8H2SO4 = 2MnSO4 + 5I2 + 6K2SO4 + 8H2O.

Видео по теме

Обратите внимание!
Не забывайте расставлять показатели в реакциях!

Химические реакции – это взаимодействие веществ, сопровождаемое изменением их состава. Иными словами, вещества, вступающие в реакцию, не соответствуют веществам, получающимся в итоге реакции. С сходственными взаимодействиями человек сталкивается ежечасно, ежеминутно. Чай процессы, происходящие в его организме (дыхание, синтез белков, пищеварение и т.д.) – это тоже химические реакции.

Инструкция

1. Любая химическая реакция должна быть записана верно. Одно из основных требований – дабы число атомов всего элемента веществ, находящихся в левой части реакции (их называют «начальные вещества»), соответствовало числу атомов того же элемента в веществах правой части (их называют – «продукты реакции»). Иными словами, запись реакции должна быть уравненной.

2. Разглядим определенный пример. Что происходит, когда на кухне зажигают газовую конфорку? Природный газ вступает в реакцию с кислородом воздуха. Эта реакция окисления настоль экзотермическая, то есть сопровождаемая выделением тепла, что появляется пламя. С поддержкой которого вы либо готовите пищу, либо разогреваете теснее приготовленную.

3. Для облегчения допустите, что природный газ состоит только из одного его компонента – метана, имеющего формулу СН4. Потому что же составить и уравнять эту реакцию?

4. При сгорании углеродсодержащего топлива, то есть при окислении углерода кислородом образуется углекислый газ. Вам знаменита его формула: СО2. А что образуется при окислении содержащегося в метане водорода кислородом? Безусловно, вода в виде пара. Уж ее-то формулу знает назубок даже самый дальний от химии человек: Н2О.

5. Выходит, запишите в левой части реакции начальные вещества: СН4 + О2.В правой, соответственно, будут продукты реакции: СО2 + Н2О.

6. Заблаговременная запись этой химической реакции будет дальнейшей: СН4 + О2 = СО2 + Н2О.

7. Уравняйте вышенаписанную реакцию, то есть добейтесь выполнения основного правила: число атомов всего элемента в левой и правой частях химической реакции должно быть идентичным.

8. Вы видите, что число атомов углерода совпадает, а число атомов кислорода и водорода различное. В левой части 4 атома водорода, а в правой – только 2. Следственно поставьте перед формулой воды показатель 2. Получите: СН4 + О2 = СО2 + 2Н2О.

9. Атомы углерода и водорода уравнены, сейчас осталось сделать то же самое с кислородом. В левой части атомов кислорода 2, а в правой – 4. Поставив перед молекулой кислорода показатель 2, получите итоговую запись реакции окисления метана: СН4 + 2О2 = СО2 + 2Н2О.

Уравнение реакции – условная запись химического процесса, при котором одни вещества превращаются в другие с изменением свойств. Для записи химических реакций применяют формулы веществ и умения о химических свойствах соединений.

Инструкция

1. Верно напишите формулы, в соответствии с их наименованиями. Скажем, оксид алюминия Al?O?, индекс 3 от алюминия (соответствует его степени окисления в этом соединении) поставьте вблизи кислорода, а индекс 2 (степень окисления кислорода) вблизи алюминия. Если степень окисления +1 либо -1, то индекс не ставится. К примеру, вам необходимо записать формулу нитрата аммония. Нитрат – кислотный остаток азотной кислоты (-NO?, с.о. -1), аммоний (-NH?, с.о. +1). Таким образом формула нитрата аммония – NH? NO?. Изредка степень окисления указывается в наименовании соединения. Оксид серы (VI) – SO?, оксид кремния (II) SiO. Некоторые примитивные вещества (газы) записываются с индексом 2: Cl?, J?, F?, O?, H? и т.д.

2. Нужно знать, какие вещества вступают в реакцию. Видимые знаки реакции: выделение газа, метаморфоза окраски и выпадение осадка. Дюже зачастую реакции проходят без видимых изменений. Пример 1: реакция нейтрализацииH?SO? + 2 NaOH ? Na?SO? + 2 H?OГидроксид натрия реагирует с серной кислотой с образованием растворимой соли сульфата натрия и воды. Ион натрия отщепляется и соединяется с кислотным остатком, замещая водород. Реакция проходит без внешних знаков. Пример 2: йодоформная проба С?H?OH + 4 J? + 6 NaOH?CHJ?? + 5 NaJ + HCOONa + 5 H?OРеакция идет в несколько этапов. Финальный итог – выпадение кристаллов йодоформа желтого цвета (добротная реакция на спирты). Пример 3: Zn + K?SO? ? Реакция немыслима, т.к. в ряду напряжений металлов цинк стоит позже калия и не может вытеснять его из соединений.

3. Закон сохранения массы гласит: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ. Грамотная запись химической реакции – половина фурора. Нужно расставить показатели. Начните уравнивать с тех соединений, в формулах которых присутствуют крупные индексы. K?Cr?O? + 14 HCl ? 2 CrCl? + 2 KCl + 3 Cl?? + 7 H?O Расставлять показатели начните с бихромата калия, т.к. в его формуле содержится крупнейший индекс (7). Такая точность в записи реакций нужна для расчета массы, объема, концентрации, выделившейся энергии и других величин. Будьте внимательны. Запомните особенно зачастую встречающиеся формулы кислот и оснований, а также кислотные остатки.

Совет 7: Как определить окислительно-восстановительные уравнения

Химическая реакция – это процесс перевоплощения веществ, происходящий с изменением их состава. Те вещества, которые вступают в реакцию, именуются начальными, а те, которые образуются в итоге этого процесса – продуктами. Бывает так, что в ходе химической реакции элементы, входящие в состав начальных веществ, изменяют свою степень окисления. То есть они могут принять чужие электроны и отдать свои. И в том, и в ином случае меняется их заряд. Такие реакции именуются окислительно-восстановительными.

Инструкция

1. Запишите точное уравнение химической реакции, которую вы рассматриваете. Посмотрите, какие элементы входят в состав начальных веществ, и каковы степени окисления этих элементов. Позже этого сравните эти показатели со степенями окисления тех же элементов в правой части реакции.

2. Если степень окисления изменилась, эта реакция является окислительно-восстановительной. Если же степени окисления всех элементов остались бывшими – нет.

3. Вот, скажем, обширно вестимая добротная реакция выявления сульфат-иона SO4 ^2-. Ее суть в том, что сернокислая соль бария, которая имеет формулу BaSO4, фактически нерастворима в воде. При образовании она мигом выпадает в виде плотного тяжелого белого осадка. Запишите какое-нибудь уравнение сходственной реакции, скажем, BaCl2 + Na2SO4 = BaSO4 + 2NaCl.

4. Выходит, из реакции вы видите, что помимо осадка сульфата бария образовался хлорид натрия. Является ли эта реакция окислительно-восстановительной? Нет, не является, от того что ни один элемент, входящий в состав начальных веществ, не изменил свою степень окисления. И в левой, и в правой части химического уравнения барий имеет степень окисления +2, хлор -1, натрий +1, сера +6, кислород -2.

5. А вот реакция Zn + 2HCl = ZnCl2 + H2. Является ли она окислительно-восстановительной? Элементы начальных веществ: цинк (Zn), водород (Н) и хлор (Сl). Посмотрите, каковы их степени окисления? У цинка она равна 0 как в любом простом веществе, у водорода +1, у хлора -1. А каковы степени окисления этих же элементов в правой части реакции? У хлора она осталась непоколебимой, то есть равной -1. Но у цинка стала равной +2, а у водорода – 0 (от того что водород выделился в виде простого вещества – газа). Следственно, эта реакция является окислительно-восстановительной.

Видео по теме

Каноническое уравнение эллипса составляется их тех соображений, что сумма расстояний от какой-нибудь точки эллипса до 2-х его фокусов неизменно непрерывна. Фиксируя это значение и двигая точку по эллипсу, дозволено определить уравнение эллипса.

Вам понадобится

  • Лист бумаги, шариковая ручка.

Инструкция

1. Задайте на плоскости две фиксированные точки F1 и F2. Расстояние между точками пускай будет равно какому-то фиксированному значению F1F2= 2с.

2. Нарисуйте на листе бумаги прямую, являющуюся координатной прямой оси абсцисс, и изобразите точки F2 и F1. Данные точки представляют собой фокусы эллипса. Расстояние от всей точки фокуса до начала координат должно быть равно одному и тому же значению, равному c.

3. Нарисуйте ось ординат, образовав таким образом декартовую систему координат, и напишите основное уравнение, задающее эллипс: F1M + F2M = 2a. Точка М обозначает нынешнюю точку эллипса.

4. Определите величину отрезков F1M и F2M с подмогой теоремы Пифагора. Имейте в виду, что точка М имеет нынешние координаты (x,y) касательно начала координат, а касательно, скажем, точки F1 точка M имеет координаты (x+c, y), то есть «иксовая» координата приобретает сдвиг. Таким образом, в выражении теоремы Пифагора одно из слагаемых должно быть равно квадрату величины (x+c), либо величины (x-c).

5. Подставьте выражения для модулей векторов F1M и F2M в основное соотношение эллипса и возведите обе части уравнения в квадрат, заблаговременно переместив один из квадратных корней в правую часть уравнения и раскрыв скобки. Позже сокращения идентичных членов, поделите полученное соотношение на 4a и вновь возведите во вторую степень.

6. Приведите сходственные члены и соберите слагаемые с одним и тем же множителем квадрата «иксовой» переменной. Вынесите за скобку квадрат «иксовой» переменной.

7. Обозначьте за квадрат некоторой величины (скажем, b) разность квадратов величин a и с и поделите полученное выражение на квадрат этой новой величины. Таким образом, вы получили каноническое уравнение эллипса, в левой части которого сумма квадратов координат, деленных на величины осей, а в левой – единица.

Полезный совет
Для того дабы проверить выполнение задания, вы можете воспользоваться законом сохранения массы.