Взаимодействие с первичных вторичных и ароматических аминов. Химические свойства аминов

Амины - органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

Обычно выделяют три типа аминов :

Амины, в которых аминогруппа связана непо­средственно с ароматическим кольцом, называют­ся ароматическими аминами .

Простейшим представителем этих соединений является аминобензол, или анилин:

Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподелен­ной электронной пары . Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продук­том формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

Изомерия и номенклатура

1. Для аминов характерна структурная изомерия :

а) изомерия углеродного скелета :

б) изомерия положения функциональной группы :

2. Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия ):

Как видно из приведенных примеров, для то­го чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшин­ства), и добавляют суффикс -амин .

Физические свойства аминов

Простейшие амины (метиламин, диметиламин, триметиламин) - газообразные вещества. Осталь­ные низшие амины - жид­кости, которые хорошо рас­творяются в воде. Имеют характерный запах, напоми­нающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи . Это приво­дит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

Анилин - маслянистая жидкость, ограничен­но растворимая в воде, кипящая при температуре 184 °С.

Анилин

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары .

Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет не­поделенной пары электронов может образовывать ковалентную связь по донорно-акцепторному меха­низму, выступая в роли донора . В связи с этим ами­ны, как и аммиак, способны присоединять катион водорода, т. е. выступать в роли основания:

1. Реакция амионов с водой приводит к образо­ванию гидроксид-ионов:

Раствор амина в воде имеет щелочную реакцию.

2. Реакция с кислотами. Аммиак, реагируя с кислотами, образует соли аммония. Амины так­же способны вступать в реакцию с кислотами:

Основные свойства алифатических аминов вы­ражены сильнее, чем у аммиака. Это связано с на­личием одного и более донорных алкильных за­местителей, положительный индуктивный эффект которых повышает электронную плотность на атоме азота. Повышение электронной плотности превра­щает азот в более сильного донора пары электронов, что повышает его основные свойства:

Горение амионов. Амины горят на воздухе с об­разованием углекислого газа, воды и азота:

Химические свойства аминов - конспект

Применение аминов

Амины широко применяются для получения лекарств , полимерных материалов . Анилин - важнейшее соединение данного класса, которое используют для производства анилиновых краси­телей, лекарств (сульфаниламидных препаратов), полимерных материалов (анилинформальдегидных смол).

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Подобно аммиаку, амины проявляют свойства оснований. Водные растворы низших аминов окрашивают красный лакмус в синий цвет, имеют щелочную среду.



Причина основных свойств – свободная электронная пара атома азота, за счет которой присоединяется протон водорода. Основные свойства аминов обусловлены способностью присоединять протон водорода (Н +), и чем легче он присоединяется, тем ярче выражены основные свойства. Следовательно, амины – органические основания. По мере роста углеродного скелета растворимость в воде уменьшается, поэтому высшие амины не дают щелочной реакции, но сохраняют свойства оснований и с кислотами образуют соли. На характер основных свойств оказывает влияние природа радикала, с которым связана аминогруппа. Электронодонорные группы усиливают основные свойства, электроноакцепторные – уменьшают.

Ароматические амины проявляют более слабые основные свойства, чем амины предельного ряда. Объясняется это влиянием бензольного ядра на аминогруппу. Свободная электронная пара атома азота вступает в сопряжение с п-электронами бензольного ядра, что приводит к уменьшению электронной плотности на атоме азота, тем самым к ослаблению способности присоединять Н + .



Амины можно расположить в следующий ряд по убыванию основных свойств:

(СН 3) 3 N > (СН 3) 2 NН> СН 3 NH 2 > NH 3 > C 6 H 5 NH 2 > (С 6 Н 5) 2 NН> (C 6 H 5) 3 N

Образование солей. Подобно аммиаку, амины реагируют с кислотами, образуя соли:


Соли аминов, в отличие от аминов, хорошо растворимы в воде, но не растворяются в органических растворителях. При действии на соли аминов щелочей происходит выделение аминов:


Предельные амины могут осаждать нерастворимые гидроксиды металлов из растворов солей, например:

Алкилирование аминов. Взаимодействие с галогенопроизводными. Из первичных аминов образуются вторичные амины, а из вторичных – третичные:





Ацилирование – введение ацильной группы, при этом получаются амиды кислот:

Горение. Амины сгорают в кислороде, образуя азот, СО 2 и Н 2 О , например.

Лекция № 13

АМИНЫ

План

    1. Классификация.
    2. Методы получения.
    3. Химические свойства.

    4. производные.


Лекция № 13

АМИНЫ

План

    1. Классификация.
    2. Методы получения.
    3. Химические свойства.
    4. Биологически активные амины и их
      производные.

Амины можно
рассматривать как производные аммиака, в котором атомы водорода замещаются на
углеводородные радикалы.

1. Классификация

В зависимости от числа углеводородных радикалов, связанных с атомом азота,
различают первичные, вторичные и третичные амины, а также четвертичные
аммониевые соли.

По природе углеводородного радикала, связанного
с атомом азота, различают алкиламины, алкилариламины, ариламины,
гетероциклические амины.

Алкиламины содержат только алифатические
углеводородные радикалы, например:

Ариламины содержат ароматические
радикалы с атомом азота в ароматическом кольце, например:

Алкилариламины содержат
алифатические и ароматические радикалы, например:

Гетероциклические амины содержат
атом азота в цикле, например:

2. Методы получения.


3. Химические
свойства.

Химические свойства аминов определяются в основном присутствием атома азота с
неподеленной парой электронов, наличие которой обуславливает их основные и
нуклеофильные свойства.

Основные и кислотные свойства
Алифатические амины являются
сильными основаниями (=10-11) и превосходят по основности аммиак. Их водные растворы имеют
щелочную реакцию.

RNH 2 + H 2 O = RNH 3 + + OH —

Ароматические амины – слабые основания (=3-5), что связано с разрушением
при протонированиии стабильной сопряженной системы, в которой участвует
неподеленная пара электронов азота (см. лек. №4).

При взаимодействии с кислотами амины образуют
растворимые в воде аммониевые соли.

RNH 2 + HX ® RNH 3 + X —

Первичные и вторичные амины являются слабыми N-H
кислотами (рК а =33-35) и образуют соли при взаимодействии с активными
металлами.

RNH 2 + Na ® RNH — Na + + 1/2 H 2

Нуклеофильные свойства

Алкилирование аминов

Амины обладают нуклеофильными свойствами и алкилируются алкилгалогенидами и
спиртами (см. методы получения).

Ацилирование аминов

Амины ацилируются карбоновыми кислотами и их производными с образованием
амидов карбоновых кислот (см. лек. №12).

2RNH 2 + R / COX ® R / CONHR + RNH 3 X

2R 2 NH + R / COX ® R / CONR 2 + R 2 NH 2 X

Взаимодействие аминов с азотистой
кислотой

Первичные, вторичные и третичные амины по-разному взаимодействуют с азотистой
кислотой, что используется для установления типа амина. Неустойчивую азотистую
кислоту генерируют действием сильной кислоты на нитриты.

Третичные алифатические амины при обычной температуре с азотистой
кислотой не взаимодействуют.

Вторичные амины образуют с азотистой кислотой устойчивые нитрозамины – жидкие или твердые продукты желтого цвета.

R 2 NH + NaNO 2 + HCl ® R 2 N-N=O + NaCl + H 2 O

нитрозамин Нитрозамины
являются сильными канцерогенами. Показана возможность синтеза нитрозаминов в
желудке человека из содержащихся в пище и лекарственных препаратах вторичных
аминов и нитритов Канцерогенное действие нитрозаминов основано на их способности
алкилировать нуклеофильные центры ДНК, что приводит к онкогенным мутациям.

Первичные алифатические амины реагируют с азотистой кислотой с
выделением газообразного азота. Реакция идет через образование неустойчивого
первичного нитрозамина, который изомеризуется в диазогидроксид, превращающийся
далее в соль диазония.

нитрозамин диазогидроксид соль
диазония
Дальнейший ход реакции зависит
от природы углеводородного радикала.

Если R – алифатический радикал, то соль диазония очень неустойчива и
немедленно разлагается с образованием молекулы азота и карбокатиона, который
затем взаимодействует с находящимися в реакционной среде нуклеофилами (например,
с растворителем) или отщепляет протон и дает продукт элиминирования. Например,
превращения катиона н-пропилдиазония могут быть представлены следующей схемой:

Реакция не имеет препаративного значения.
Процесс используется в аналитических целях для количественного определения
первичных алифатических аминов, в том числе природных a -аминокислот, по объему
выделяющегося азота.

Соли арилдиазония более устойчивы и могут
быть выделены из реакционной смеси. Они являются высокореакционноспособными
соединениями и широко используются в органическом синтезе.

Реакции солей арилдиазония

Процесс получения ароматических диазосоединений
называется диазотированием и выражается следующим суммарным
уравнением.

ArNH 2 + NaNO 2 + 2HCl ® ArN 2 + Cl — + NaCl + 2H 2 O

Реакции солей арилдиазония можно разделить на
два типа: реакции с выделением азота и реакции без выделения азота.

Реакции, протекающие с выделением азота. Этот тип реакций представляет собой замещение в ароматическом кольце, уходящей
группой в котором является молекула азота N 2 .

Реакции используются для введения различных
заместителей в ароматическое кольцо.

Реакции, протекающие без выделения азота. Наиболее важной реакцией этого типа является азосочетание . Катион
диазония обладает слабыми электрофильными свойствами и вступает в реакции
электрофильного замещения с аренами, содержащими сильные электронодонорные
заместители. При этом образуются азосоединения .

Азосоединения содержат длинную систему
сопряженных связей и поэтому окрашены. Они используются как красители.
Образование окрашенных соединений при взаимодействии солей арилдиазония с
ароматическими аминокислотами (тирозин, гистидин) используется для их
качественного и количественного определения.

Реакции ароматического кольца
ариламинов

Аминогруппа является сильным активирующим
заместителем и ориентантом II рода (см. лек. №8).

Анилин легко бромируется бромной водой с
образованием триброманилина.

В большинстве реакций электрофильного
реакционноспособная аминогруппа предварительно защищается путем ацилирования.
После проведения реакции ацильную защиту снимают кислотным или щелочным
гидролизом.

4. Биологически активные амины и их
производные.

Биологическую активность проявляют гетерофункциональные соединения,
содержащие аминогруппу – аминокарбоновые кислоты, аминоспирты, аминофенолы,
аминосульфокислоты.

Этаноламин и его производные .

Этаноламин (коламин)
HOCH
2 CH 2 NH 2 является структурным компонентом сложных липидов (см. лек. №18). В организме
образуется при декарбоксилировании аминокислоты серина (см. лек. № 16).

Холин HOCH 2 CH 2 N + (CH 3) 2 – структурный компонент фосфолипидов; витаминоподобное
вещество, регулирующее жировой обмен; предшественник в биосинтезе
ацетилхолина.

Ацетилхолин CH 3 COOCH 2 CH 2 N + (CH 3) 2 — посредник при передаче нервных импульсов
(нейромедиатор). Накопление ацетилхолина в организме приводит к непрерывной
передаче нервных импульсов и сокращению мускульной ткани. На этом основано
действие нервнопаралитических ядов (зарин,табун), которые ингибируют действие
фермента ацетилхолинэстеразы, катализирующего расщепление ацетилхолина.

Катехоламины – дофамин,
норадреналин, адреналин – биогенные амины, продукты метаболизма аминокислоты
фенилаланина.

Катехоламины выполняют роль гормонов и
нейромедиаторов. Адреналин является гормоном мозгового слоя надпочечников,
норадреналин и дофамин – его предшественниками. Адреналин участвует в регуляции
сердечной деятельности, обмена углеводов. Увеличение концентрации катехоламинов
– типичная реакция на стресс. Их роль заключается в мобилизации организма на
осуществление активной мозговой и мышечной деятельности.

Структурно близки к катехоламинам некоторые
природные и синтетические биологически активные вещества, также содержащие
аминогруппу в b -положении к ароматическому кольцу.

Фенамин является стимулятором центральной
нервной системы, снимает чувство усталости. Эфедрин – алкалоид, обладающий
сосудорасширяющим действием.

Производные п-аминофенола парацетамол и фенацетин
лекарственные препараты, обладающие обезболивающим и жаропонижающим
действием.

В настоящее время фенацетин рассматривается как
вещество, возможно являющееся канцерогеном для человека.

п-Аминобензойная кислота и ее
производные.

п-Аминобензойная кислота –
витаминоподобное вещество, фактор роста микроорганизмов; участвует в синтезе
фолиевой кислоты (витамина В С). Сложные эфиры п-аминобензойной
кислоты вызывают местную анестезию.

Анестезин и новокаин применяются в виде растворимых в воде гидрохлоридов.

Сульфаниловая кислота (п-аминобензолсульфокислота) и
сульфаниламиды.

Амид сульфаниловой кислоты (стрептоцид) и его N-замещенные производные –
эффективные антибактериальные средства. Синтезировано более 5000 производных
сульфаниламида. Наибольшую активность проявляют сульфониламиды, содержащие
гетероциклические основания.

Антибактериальное действие сульфамидных
препаратов основано на том, что они имеют структурное сходство с
п-аминобензойной кислотой и являются ее атиметаболитами. Присутствующие в
бактериальной среде сульфаниламиды включаются в процесс биосинтеза фолиевой
кислоты, конкурируя с п-аминобензойной кислотой, и на определенной стадии
блокируют его, что ведет к гибели бактерий. Сульфаниламиды не влияют на организм
человека, в котором фолиевая кислота не синтезируется.

Амины - органические производные аммиака, содержащие аминогруппу NH 2 и органический радикал. В общем случае формула амина представляет собой формулу аммиака, в которой атомы водорода заменены на углеводородный радикал.

Классификация

  • По тому, сколько в аммиаке атомов водорода заменено радикалом, различают первичные амины (один атом), вторичные, третичные. Радикалы могут быть одинаковыми или разнотипными.
  • Амин может содержать не одну аминогруппу, а несколько. По этой характеристике их делят на моно, ди-, три-, … полиамины.
  • По типу радикалов, связанных с атомом азота, различают алифатические (не содержащие циклических цепей), ароматические (содержащие цикл, самый известный - анилин с бензольным кольцом), смешанные (жиро-ароматические, содержащие циклический и нециклический радикалы).

Свойства

В зависимости от длины цепочки атомов в органическом радикале, амины могут быть газообразными (три-, ди-, метиламин, этиламин), жидкими или твердыми веществами. Чем длиннее цепь, тем тверже вещество. Простейшие амины водорастворимы, но по мере перехода к более сложным соединениям водорастворимость уменьшается.

Газообразные и жидкие амины - вещества с выраженным запахом аммиака. Твердые практически лишены запаха.

Амины проявляют в химических реакциях сильные оснóвные свойства, в результате взаимодействия с неорганическими кислотами получаются алкиламмониевые соли. Реакция с азотистой кислотой является качественной для этого класса соединений. В случае первичного амина получается спирт и газообразный азот, со вторичным - нерастворимый желтый осадок с выраженным запахом нитрозодиметиламина; с третичным реакция не идет.

Реагируют с кислородом (горят на воздухе), галогенами, карбоновыми кислотами и их производными, альдегидами, кетонами.

Практически все амины, за редким исключением, ядовиты. Так, самый знаменитый представитель класса, анилин, легко проникает через кожный покров, окисляет гемоглобин, угнетает ЦНС, нарушает обмен веществ, что может привести даже к смерти. Токсичны для человека и пары.

Признаки отравления:

Одышка,
- синюшность носа, губ, кончиков пальцев,
- частое дыхание и усиленное сердцебиение, потеря сознания.

Первая помощь:

Смыть хим.реактив ватой со спиртом,
- обеспечить доступ к чистому воздуху,
- вызвать «Скорую помощь».

Применение

В качестве отвердителя эпоксидных смол.

Как катализатор в химпроме и металлургии.

Сырье для получения полиамидных искусственных волокон, например, нейлона.

Для изготовления полиуретанов, пенополиуретанов, полиуретановых клеев.

Исходный продукт для получения анилина - основы для анилиновых красителей.

Для производства лекарственных средств.

Для изготовления фенолформальдегидных смол.

Для синтеза репеллентов, фунгицидов, инсектицидов, пестицидов, минеральных удобрений, ускорителей вулканизации резины, антикоррозионных реактивов, буферных растворов.

Как добавка к моторным маслам и топливам, сухое горючее.

Для получения светочувствительных материалов.

Уротропин используется как пищевая добавка, а также ингредиент косметических средств.

В нашем интернет-магазине можно купить реактивы, относящиеся к классу аминов.

Метиламин

Первичный алифатический амин. Востребован как сырье для производства лекарств, красителей, пестицидов.

Диэтиламин

Вторичный амин. Применяется в качестве исходного продукта при получении пестицидов, лекарств (например, новокаина), красителей, репеллентов, добавок к топливу и моторным маслам. Из него изготавливают реактивы для защиты от коррозии, для обогащения руд, отверждения эпоксидных смол, ускорения процессов вулканизации.

Триэтиламин

Третичный амин. Используется в химпроме в качестве катализатора при производстве резин, эпоксидных смол, пенополиуретанов. В металлургии - катализатор отвердения в безобжиговых процессах. Сырье в органическом синтезе лекарств, минеральных удобрений, средств для борьбы с сорняками, красок.

1-бутиламин

Третбутиламин, соединение, в котором с азотом связана трет-бутильная органическая группа. Вещество применяется при синтезе усилителей вулканизации резины, лекарств, красителей, дубильных веществ, препаратов против сорняков и насекомых.

Уротропин (гексамин)

Полициклический амин. Востребованное в экономике вещество. Используется как пищевая добавка, лекарство и компонент лекарств, ингредиент косметических средств, буферных растворов для аналитической химии; как сухое горючее, отвердитель полимерных смол, в синтезе фенолформальдегидных смол, фунгицидов, взрывчатых веществ, средств для защиты от коррозии.

Органические основания - такое название часто используют в химии для соединений, являющихся производными аммиака. Атомы водорода в его молекуле замещены на углеводородные радикалы. Речь идет об аминах - соединениях, повторяющих химические свойства аммиака. В нашей статье мы познакомимся с общей формулой аминов и их свойствами.

Строение молекулы

В зависимости от того, сколько атомов водорода замещены углеводородными радикалами, различают первичные, вторичные и третичные амины. Например, метиламин - первичный амин, в котором водородную частицу заменили группой -CH 3 . Структурная формула аминов - R-NH 2 , ее можно использовать, чтобы определить состав органического вещества. Примером вторичного амина может быть диметиламин, имеющий следующий вид: NH 2 -NH-NH 2 . В молекулах третичных соединений все три атома водорода аммиака замещены углеводородными радикалами, например, триметиламин имеет формулу (NH 2) 3 N. Строение аминов влияет на их физические и химические свойства.

Физическая характеристика

Агрегатное состояние аминов зависит от того, какова молярная масса радикалов. Чем она меньше, тем ниже удельный вес вещества. Низшие вещества класса аминов представлены газами (например, метиламин). Они имеют хорошо выраженный запах аммиака. Средние амины - это слабо пахнущие жидкости, а соединения с большой массой углеводородного радикала - твердые вещества без запаха. Растворимость аминов также зависит от массы радикала: чем она больше, тем вещество хуже растворяется в воде. Таким образом, строение аминов определяет их физическое состояние и характеристику.

Химические свойства

Характеристика веществ зависит в основном от превращений аминогруппы, в которой ведущая роль отводится ее неподеленной электронной паре. Так как органические вещества класса аминов являются производными аммиака, то они способны к реакциям, характерным для NH 3 . Например, соединения растворяются в воде. Продуктами такой реакции будут вещества, проявляющие свойства гидроксидов. Например, метиламин, атомный состав которого подчиняется общей формуле предельных аминов R-NH 2 , с водой образует соединение - гидроксид метиламмония:

CH 3 - NH 2 + H 2 O = OH

Органические основания взаимодействуют с неорганическими кислотами, при этом в продуктах обнаруживается соль. Так, метиламин с соляной кислотой дает хлорид метиламмония:

СН 3 -NH 2 + HCl -> Cl

Реакции аминов, общая формула которых - R-NH 2 , с органическими кислотами проходят с замещением атома водорода аминогруппы сложным анионом кислотного остатка. Они называются реакциями алкилирования. Как и в реакции с нитритной кислотой, ацильные производные могут образовывать только первичные и вторичные амины. Триметиламин и другие третичные амины к таким взаимодействиям не способны. Добавим также, что алкилирование в аналитической химии применяют для разделения смесей аминов, оно также служит качественной реакцией на первичные и вторичные амины. Среди циклических аминов важное место принадлежит анилину. Его добывают из нитробензола восстановлением последнего водородом в присутствии катализатора. Анилин является исходным сырьем для производства пластмасс, красителей, взрывчатых и лекарственных веществ.

Особенности третичных аминов

Третичные производные аммиака отличаются своими химическими свойствами от одно- или двухзамещенных соединений. Например, они могут взаимодействовать с галогенопроизводными соединениями предельных углеводородов. В результате образуются соли тетраалкиламмония. Окись серебра вступает в реакцию с третичными аминами, при этом амины переходят в гидроксиды тетраалкиламмония, являющиеся сильными основаниями. Апротонные кислоты, например трифторид бора, с триметиламином способны образовывать комплексные соединения.

Качественная проба на первичные амины

Реактивом, с помощью которого можно обнаружить одно- или двухзамещенные амины, может служить азотистая кислота. Так как она не существует в свободном состоянии, для ее получения в растворе сначала проводят реакцию между разбавленной хлоридной кислотой и нитритом натрия. Затем добавляют растворенный первичный амин. Состав его молекулы можно выразить с помощью общей формулы аминов: R-NH 2. Этот процесс сопровождается появлением молекул непредельных углеводородов, которые можно определить с помощью реакции с бромной водой или раствором перманганата калия. Качественной можно считать и изонитрильную реакцию. В ней первичные амины взаимодействуют с хлороформом в среде с избыточной концентрацией анионов гидроксогрупп. В результате происходит образование изонитрилов, обладающих неприятным специфическим запахом.

Особенности реакции вторичных аминов с нитритной кислотой

Технология получения реактива HNO 2 описана нами выше. Затем к раствору, содержащему реактив, прибавляют органическое производное аммиака, содержащее два углеводородных радикала, например, диэтиламин, молекула которого соответствует общей формуле вторичных аминов NH 2 -R-NH 2 . В продуктах реакции находим нитросоединение: N-нитрозодиэтиламин. Если на него подействовать хлоридной кислотой, то соединение разлагается на хлоридную соль исходного амина и хлористый нитрозил. Добавим еще, что третичные амины не способны к реакциям с азотистой кислотой. Это объясняется следующим фактом: нитритная кислота относится к слабым кислотам, и ее соли при взаимодействии с аминами, содержащими три углеводородных радикала, в водных растворах полностью гидролизуются.

Способы получения

Амины, общая формула которых - R-NH 2 , можно добыть восстановлением соединений, содержащих азот. Например, это может быть восстановление нитроалканов в присутствии катализатора - металлического никеля - при нагревании до +50 ⁰C и при давлении до 100 атм. Нитроэтан, нитропропан или нитрометан в результате этого процесса превращаются в амины. Вещества данного класса можно получить и восстановлением водородом соединений группы нитрилов. Данная реакция проходит в органических растворителях, при этом необходимо присутствие никелевого катализатора. Если в качестве восстановителя используют металлический натрий, в этом случае процесс осуществляется в спиртовом растворе. Приведем в качестве примеров еще два метода: аминирование галогеноалканов и спиртов.

В первом случае образуется смесь аминов. Аминирование спиртов осуществляется следующим способом: смесь паров метанола или этанола с аммиаком пропускают над окисью кальция, выполняющей роль катализатора. Образующиеся первичные, вторичные и третичные амины обычно можно разделить разгонкой.

В нашей статье мы изучили строение и свойства азотсодержащих органических соединений - аминов.