Уроки по неорганической химии для подготовки к егэ. Классификация и свойства сложных неорганических веществ

И их производные. Все остальные вещества - неорганические.

Классификация неорганических веществ
Неорганические вещества по составу делят на простые и сложные.

Простые вещества состоят из атомов одного химического элемента и подразделяются на металлы, неметаллы, благородные газы. Сложные вещества состоят из атомов разных элементов, химически связанных друг с другом.

Сложные неорганические вещества по составу и свойствам распределяют по следующим важнейшим классам: оксиды, основания , кислоты, амфотерные гндроксиды, соли.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
  • 4. Элементы теории и вопросы для самопроверки по темам курса. Предисловие
  • 1. Химические формулы. Валентность
  • 2. Номенклатура
  • 3. Классификация неорганических соединений
  • Гидроксиды
  • 4. Структурные формулы
  • Тема 1. Атомно-молекулярное учение
  • 1.2. Газовые законы
  • 1.3. Определение молекулярных масс веществ
  • 1.4. Эквивалент. Эквивалентные массы.
  • Тема 1. Атомно-молекулярное учение и стехиометрия
  • Тема 2. Строение атома
  • 2.1. Корпускулярно-волновое описание движения электрона в атоме
  • 2.2 Волновая теория строения атома.
  • 2.3. Квантовые числа
  • 2.5. Периодическая система и изменение свойств элементов
  • 1) При заполнении уровня и подуровня устойчивость электронной конфигурации возрастает и
  • 2) Особой устойчивостью обладают заполненные (s2, p6, d10, f14) и наполовину заполненные (p3, d5, f7) конфигурации.
  • Тема 2. Строение атома
  • Тема 3. Химическая связь
  • 3.1. Метод валентных связей (вс)
  • Приведённым схемам вс соответствуют структурные формулы (сф) (рис. 3.3), на которых связывающие электронные пары изображают чёрточками (валентная черта), а несвязывающие электроны – точками.
  • 3.2. Метод молекулярных орбиталей (мо)
  • 3.3. Теории металлической связи
  • 3.4. Межмолекулярные взаимодействия
  • 3.5. Кристаллические решетки
  • Тема 3. Химическая связь
  • 3.6. Комплексные соединения
  • 3.6.1. Определения, составные части и классификация
  • 3.6.2. Равновесие в растворах комплексных соединений
  • 3.6.3. Изомерия комплексных соединений
  • 3.6.4. Химическая связь в комплексных соединениях
  • Тема 4. Элементы термодинамики
  • 4.1. Основные понятия и определения
  • 4.2. Тепловые эффекты химических реакций
  • 4.2.2. Термохимические расчеты.
  • 4.3. Направление химических реакций
  • 4.3.1. Энтропия
  • 4.3.2 Энтальпийный и энтропийный факторы.
  • Тема 4. Химическая термодинамика
  • Тема 5. Химическое равновесие
  • 5.1. Химическое равновесие
  • 5.2. Константа равновесия
  • Например, для обратимой реакции
  • 5.3. Свободная энергия и константа равновесия
  • 5.4. Смещение химического равновесия. Принцип Ле Шателье
  • Напоминаем, что в выражение константы равновесия гетерогенной реакции входят только концентрации газообразных веществ, так как концентрации твердых веществ остаются, как правило, постоянными.
  • Тема 5. Химическое равновесие
  • Тема 6. Химическая кинетика
  • 6.1. Основные понятия и представления
  • 6.2. Зависимость скорости химической реакции
  • 6.3. Зависимость скорости от температуры
  • 6.4. Катализ
  • Тема 6. Химическая кинетика
  • Тема 7. Концентрация растворов
  • 7.1. Способы выражения концентрации растворов
  • Тема 7. Концентрация растворов
  • Тема8. Растворы
  • 8.1. Свойства разбавленных растворов неэлектролитов
  • 8.2. Растворы электролитов
  • 8.2.1. Диссоциация кислот, оснований и солей
  • 8.2.2. Свойства разбавленных растворов электролитов
  • 8.2.3. Ионные реакции
  • 8.2.4. Электролитическая диссоциация воды.
  • 8.2.5. Гидролиз солей
  • Тема 8. Свойства растворов
  • Реакции в растворах электролитов
  • Тема 9. Окислительно-восстановительные реакции
  • 9.1. Уравнивание овр
  • 9.2. Типы окислительно-восстановительных реакций
  • 9.3. Эквиваленты окислителя и восстановителя
  • Тема 9. Окислительно-восстановительные реакции
  • Тема 10 .Электрохимические процессы
  • 10.2. Электролиз
  • 10.3. Количественные законы электролиза
  • 2. При прохождении одного и того же количества электричества через раствор или расплав электролита массы (объемы) веществ, выделившихся на электродах, прямо пропорциональны их химическим эквивалентам.
  • 10.4. Коррозия металлов
  • Тема 10. Электрохимические процессы
  • Контрольные задания
  • 1. Закон эквивалентов. Газовые законы
  • 2. Строение атома
  • Периодическое изменение свойств элементов
  • 3. Химическая связь
  • 4. Энергетика химических реакций
  • Свободная энергия, энтропия. Направление химических реакций
  • Химическое равновесие. Смещение химического равновесия
  • 6. Химическая кинетика
  • 7. Концентрация растворов
  • 8. Свойства разбавленных растворов неэлектролитов
  • Обменные реакции в растворах электролитов
  • Гидролиз солей
  • 9. Окислительно-восстановительные реакции
  • 10. Электрохимические процессы
  • Электролиз
  • Коррозия металлов
  • Комплексные соединения
  • Жесткость воды
  • Химия элементов
  • 1. Цели и задачи учебной дисциплины. . . . . . . . . . . . . . . . . . . 3
  • Тема 2. Строение атома. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .37
  • Тема 3. Химическая связь. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
  • Тема 4. Элементы термодинамики. . . . . . . . . . . . . . . . . . . . . . .75
  • Тема 5. Химическое равновесие. . . . . . . . . . . . . . . . . . . .. . . . . . . 89
  • Тема 6. Химическая кинетика. . . . . . . . . . . . . . . . . . .. . . . . . . . . .97
  • Тема 7. Концентрация растворов. . . . . . . . . . . . . . . . . . . . . . .. . . 104
  • Тема8. Растворы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
  • Тема 9. Окислительно-восстановительные реакции. . . . .126
  • Тема 10. Электрохимические процессы. . . . . .. . . . . . . . . . . . . .132
  • 3. Классификация неорганических соединений

    При классификации необходимо строго придерживаться признаков, по которым она проводится. Простейшим признаком является состав – атомный или элементный. По атомному составу можно выделить одно-, двух- и т.д. атомные (Не; N 2 и СО; О 3 и NO 2 и т.д., соответственно). То же по элементному составу: одноэлементные (Не, N 2); двухэлементные (СО, СО 2) и т.д.. Кроме того – по названию (виду) одного из элементов или радикалов, входящих в состав ряда соединений: оксиды, сульфиды, гидроксиды, сульфаты и т.д.

    По функциональным признакам неорганические соединения подразделяются на классы в зависимости от характерных функций, выполняемых ими в химических ре акциях. Например, широко используется кислотно-основная классификация, связанная с теорией кислот и оснований Аррениуса. В этой теории кислотой называют вещество, которое при диссоциации в воде образует ионы Н + и анионы, основанием – вещество, образующее при этом ионы ОН – и катионы, при взаимодействии кислоты и основания образуется соль и вода. Таким образом, в соответствии с этой теорией выделяют три группы веществ.

    В соответствии с этой же теорией любые сложные вещества могут обладать кислотными, основными или амфотерными свойствами.

    Кислотные свойства проявляет вещество, если оно при растворении в воде образует кислоту, а в реакциях с другими веществами отдаёт Н + , образует анион и присоединяет катион.

    Основные свойства – противоположны кислотным.

    Амфотерность – проявление противоположных свойств одним и тем же веществом (в данном случае и кислотных, и основных).

    В качестве примеров приведём классификации оксидов, гидроксидов и фторидов по этому признаку.

    Сложные вещества

    (неорганические)

    Оксиды Основания Кислоты Соли

    Оксиды - это сложные вещества, в состав которых входят атомы кислорода и какого-либо другого элемента (Э Х О Y ). Степень окисления кислорода в оксидах равна - 2. Например, Fe 2 O 3 - оксид железа (Ш); CгO - оксид хрома (II) или оксид хрома (+2).

    По химическим свойствам оксиды различают:

    ОКСИДЫ

    основные амфотерные кислотные

    образуются металлами Al 2 O 3 ,BeO,ZnO,PbO, образуются неметалла-

    (MgO;CrO;CuOи др)Cr 2 O 3 ,SnO,SnO 2 ,GeO, ми и металлами в

    в степ. окисл. +1, +2GeO 2 ,Sb 2 O 3 ,MnO 2 и др. высш. степ. окисления.

    (CO 2 ;P 2 O 5 ;Mn 2 O 7 .)

    Основными оксидами называются такие, которые при взаимодействии с кислотами образуют катион в составе соли и воду. Соединения этих оксидов с водой относят к классу оснований (например, оксиду Na 2 O соответствует основание NaOH).

    Кислотными оксидами называются такие, которые при взаимодействии с основаниями образуют анион в составе соли и воду. Соединения этих оксидов с водой относят к классу кислот (например, оксиду P 2 O 5 соответствует кислота H 3 PO 4 , а оксиду Cl 2 O 7 - кислота HClO 4).

    К амфотерным оксидам относятся такие, которые взаимодействуют с растворами кислот и оснований с образованием соли и воды. Соединения этих оксидов с водой – гидроксиды – могут иметь как кислотные, так и основные свойства (например, амфотерному оксиду ZnO соответствует основание Zn(OH) 2 и кислота H 2 ZnO 2 – изменением порядка записи атомов в формуле часто подчеркивают функцию соединения).

    При взаимодействии кислотных и основных оксидов между собой образуется соль, катион которой принадлежит основному, а анион – кислотному оксиду.

    Таким образом, характерной особенностью оксидов является способность их к образованию солей. Поэтому такие оксиды относятся к солеобразующим. Наряду с солеобразующими существуют и несолеобразующие, или безразличные, оксиды, которые не образуют кислот и солей. Примером могут служить CO, N 2 O, NO, . SiO .

    Если элемент образует оксиды в нескольких степенях окисления , то амфотерные оксиды разделяют основные и кислотные так, что оксиды, соответствующие низшим степеням окисления являются основными, а высшим - кислотными .

    Например, марганец образует оксиды:

    2 +3 +4 +6 +7

    MnO Mn 2 O 3 MnO 2 MnO 3 Mn 2 O 7

    основные оксиды амфотерный кислотные оксиды

    Для хрома характерны степени окисления: +2, +3 и +6.

    Оксиды CrO Cr 2 O 3 CrO 3

    основной амфотерный кислотный

    Химические свойства оксидов

    основные кислотные

    1. Основные оксиды взаимодействуют 1. Кислотные оксиды взаимодействуют

    с кислотами с образованием соли и воды: с растворимыми основаниями (щелочами)

    CuO+H 2 SO 4 =CuSO 4 +H 2 O.cобразованием соли и воды:

    CO 2 + 2NaOH=Na 2 CO 3 +H 2 O.

    2.Оксиды активных металлов взаимо- 2 Кислотные оксиды взаимодействуют

    действуют с водой с образованием водой с образованием кислоты:

    щелочи: Li 2 O + H 2 O = 2LiOH. P 2 O 5 + 3H 2 O = 2H 3 PO 4 .

    3. Основные и кислотные оксиды взаимодействуют между собой

    с образованием соли: CaO + CO 2 = CaCO 3 .

    амфотерные

    Амфотерные оксиды взаимодействуют как с кислотами, так и с основаниями с образованием соли и воды:

    ZnO+ 2HCl=ZnCl 2 +H 2 O;

    ZnO+ 2NaOH=Na 2 ZnO 2 +H 2 O

    или ZnO + 2NaOH + H 2 O = Na 2 .

    По отношению к растворению в воде оксиды (и многие другие вещества) подразделяют на растворимые и нерастворимые. Растворимые оксиды и другие вещества, образующие кислоты, называются ангидридами соответствующих кислот (SO 3 - ангидрид серной кислоты Н 2 SO 4 ; Cl 2 О 7 - ангидрид НСlO 4).

    Пример 7. Какие из перечисленных ниже элементов образуют кислотные оксиды:

    Na,Zn,Ba,Ti,B? Составьте формулы этих оксидов.

    Решение. Из перечисленных элементовNa,Baявляются типичными металлами, поэтому образуют основные оксиды-Na 2 O,BaO;

    Znобразует амфотерный оксид формула которого-ZnO;

    Бор относится к неметаллам, следовательно, его оксид B 2 O 3 является кислотным.

    Титан относится к переходным металлам и может проявлять степени окисления +2 и +4, следовательно, в высшей степени окисления +4 титан образует кислотный оксид TiO 2 .

    Пример 8. Для указанных оксидов укажите их характер и напишите формулы соответствующих гидроксидов:CaO,V 2 O 5 ,PbO,Li 2 O.

    Решение. СаО-оксид кальция-образован металлом, поэтому имеет основной характер, следовательно, соответствующий ему гидроксид-Са(ОН) 2 ;

    V 2 O 5 -оксид ванадия (V)-образован переходным металлом в высшей степени окисления, поэтому является кислотным оксидом (ангидридом). Соответствующий гидроксид-ванадиевая кислота-HVO 3 ;

    PbO-оксид свинца-является амфотерным оксидом, поэтому ему соответствует как кислотаH 2 PbO 2 ; так и основание-Pb(OH) 2 .

    Li 2 O– оксид лития-является основным оксидом, так как образован металлом и ему соответствует основаниеLiOH.

    Пример 9. Приведите три примера реакций между оксидом элемента 2-го периода и оксидом элемента 4-го периода.

    Решение. Чтобы прошло взаимодействие между двумя оксидами надо, чтобы один из оксидов был основным (или амфотерным) , а другой-кислотным (или амфотерным). Во втором периодеLi 2 O-основной оксид, ВеО-амфотерный, СО 2 иN 2 O 5 -кислотные. В четвертом периоде К 2 О, СаО,FeO-основные, Сr 2 O 3 -амфотерный,As 2 O 5 ,CrO 3 ,SeO 3 -кислотные оксиды. Уравнения:

    СО 2 + К 2 О = К 2 СО 3 ; ВеО + СаО = СаВеО 2 ; 3N 2 O 5 + Сr 2 O 3 = 2Сr(NO 3) 3 .

    Гидроксиды - сложные вещества, в состав которых входят одна или несколько гидроксильных групп – Э(ОН) n , ЭО m (OH) n и др.. Такая форма записи применяется, если хотят подчеркнуть основные свойства гидроксида (NaOH, AlO(OH), SO 2 (OH) 2). Если нужно подчеркнуть кислотные свойства, то формулу записывают в другом порядке – Н n ЭО m (HAlO 2 , H 2 SO 4). Амфотерные основания называют амфолитами.

    "

    Солеобразующие оксиды:

    1). Основные оксиды – это оксиды, которым соответствуют основания. К основным оксидам относятся оксиды металлов 1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II (кроме ZnO - оксид цинка и BeO – оксид берилия):оксид лития Li 2 O; оксид натрия Na 2 O; оксид калия K 2 O; оксид меди CuO; оксид серебра Ag2O; оксид магния MgO; оксид кальция CaO; оксид стронция SrO; оксид цезия Cs 2 O; оксид ртути (2) HgO; оксид рубидия Rb 2 O; оксид железа (2) FeO; оксид хрома CrO; оксид никеля NiO.

    2). Кислотные оксиды – это оксиды, которым соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с валентностью от V до VII:
    оксид углерода(IV) CO 2 ; оксид серы(IV) SO 2 ; оксид серы(VI) SO 3 ; оксид кремния(IV) SiO 2 ; оксид фосфора(V) P 2 O 5 ; ксид хрома(VI) CrO 3 ; ксид марганца(VII) Mn 2 O 7 ; оксид азота NO 2 ; ксиды хлора Cl 2 O 5 и Cl 2 O 3 .

    3). Амфотерные оксиды – это оксиды , которым соответствуют основания и кислоты. Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO: оксид цинка ZnO; оксид хрома(III) Cr 2 O 3 ; оксид алюминия Al 2 O 3 ; оксид олова(II) SnO; оксид олова(IV) SnO 2 ; оксид свинца(II) PbO; оксид свинца(IV) PbO 2 ; оксид титана(IV) TiO 2 ; оксид марганца(IV) MnO 2 ; оксид железа(III) Fe 2 O 3 ; оксид бериллия BeO.

    Несолеобразующие оксиды

    1). Несолеобразующие оксиды – это оксиды безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II:
    оксид углерода(II) CO; оксид азота(II) NO; оксид азота(I) N 2 O; оксид кремния(II) SiO, оксид серы(I) S 2 O; оксид водорода H 2 O.

    Основания. Классификация оснований

    Основаниями называют гидроксиды, которые диссоциируют (распадаются) на гидроксильную группу и положительно заряженный катион. Общая формула оснований - Э(OН)m, где m – степень окисления металла.

    Классификация оснований по силе:

    1). Сильные основания.
    Растворимые в воде основания называются щелочами:
    NaOH - гидроксид натрия (едкий натр); KOH - гидроксид калия (едкое кали); LiOH - гидроксид лития; Ba(OH) 2 - гидроксид бария; Ca(OH) 2 - гидроксид кальция (гашеная известь).

    2). Слабые основания:
    Mg(OH) 2 - гидроксид магния; Fe(OH) 2 - гидроксид железа (II); Zn(OH) 2 - гидроксид цинка; NH 4 OH - гидроксид аммония; А1 (ОН) 3 - гидроксид алюминия; Fe(OH) 3 - гидроксид железа (III) и т.д. (большинство гидроксидов металлов).

    Классификация оснований по растворимости

    Более приемлемой является классификация оснований по растворимости их в воде.

    1) Растворимые основания. Щёлочи – это основания растворимые в воде. К щелочам относят гидроксиды щелочных и щелочноземельных металлов: LiOH, NaOH, KOH, RbOH, CsOH, CaOH) 2 , Sr(OH) 2 , Ba(OH) 2 .

    2). Нерастворимые основания - это так называемые амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью -как кислоты.

    Классификация оснований по числу гидроксильных групп (ОН):

    1). Однокислотные основания (n = 1) - это основание, в состав которых входит одна группа - (ОН): LiOH, KOH, NaOH, NH4OH.

    2). Двухкислотные основания - (n = 2) - это основание, в состав которых входит две группы - (ОН): Ba(OH) 2 , Mg(OH) 2 , Zn(OH) 2 , Fe(OH) 2 .

    3). Трехкислотные основания - (n = 3) - это основание, в состав которых входит три группы - (ОН): Fe(OH) 3 , А1(ОН) 3 и др.


    Кислоты. Классификация кислот

    Кислота – это сложное вещество, в молекуле которого имеется один или несколько атомов водорода и кислотный остаток. Кислоты классифицируют по таким признакам: а) по наличию или отсутствию кислорода в молекуле и б) по числу атомов водорода.

    а) Классификация кислот по наличию или отсутствию кислорода в молекуле:

    1). Кислородсодержащие кислоты: H 2 SO 4 - серная кислота; H 2 SO 3 - сернистая кислота; HNO 3 - азотная кислота; H 3 PO 4 - фосфорная кислота; H 2 CO 3 - угольная кислота; Н 2 SiO 3 - кремниевая кислота; HClO 4 - хлорная кислота; HClO 3 - триоксохлорат(V) водорода (хлорноватая кислота); HClO 2 - диоксохлорат(III) водорода (хлористая кислота); HClO - оксохлорат(I) водорода (хлорноватистая кислота); H 2 Cr 2 O 7 - гептаоксодихромат(VI) диводорода (дихромовая кислота); H 2 S 4 O 6 - гексаоксотетрасульфат диводорода (тетратионовая кислота); Н 2 В 4 О 6 - гексаоксотетраборат диводорода (тетраметаборная кислота); H - гексагидроксостибат(V) водорода; H 3 PO 3 S - тиофосфорная кислота; HбSO 3 S - тиосерная кислота; H 3 PO 3 - фосфористая (фосфоновая) кислота.

    2). Бескислородные кислоты: HF - фтороводородная кислота; HCl - хлороводородная кислота (соляная кислота); HBr - бромоводородная кислота; HI - иодоводородная кислота; H 2 S - сероводородная кислота; HAuCl4 - тетрахлороаурат(III) водорода (золотохлористоводородная кислота); HSCN - роданистоводородная кислота; HN3 - азидоводородная кислота.

    б) Классификация кислот по числу атомов водорода:

    1). Одноосновные кислоты - это кислоты, в состав которых входит один ион (Н +): HNO 3 - азотная кислота; HF - фтороводородная кислота; HCl - хлороводородная кислота; HBr - бромоводородная кислота; HI - иодоводородная кислота; HClO 4 - хлорная кислота; HClO 3 - триоксохлорат(V) водорода (хлорноватая кислота); HClO 2 - диоксохлорат(III) водорода (хлористая кислота); HClO - оксохлорат(I) водорода (хлорноватистая кислота); HAuCl 4 - тетрахлороаурат(III) водорода (золотохлористоводородная кислота); H - гексагидроксостибат(V) водорода; HSCN - роданистоводородная кислота.

    2). Двухосновные кислоты - это кислоты, в состав которых входит два иона (Н +): H 2 SO 4 - серная кислота; H 2 SO 3 - сернистая кислота; H 2 S - сероводородная кислота; H 2 CO 3 - угольная кислота; H 2 SiO 3 - кремниевая кислота; H 2 Cr 2 O 7 - гептаоксодихромат(VI) диводорода (дихромовая кислота); H 2 S 4 O 6 - гексаоксотетрасульфат диводорода (тетратионовая кислота); Н 2 В 4 О 6 - гексаоксотетраборат диводорода (тетраметаборная кислота); H 2 SO 3 S - тиосерная кислота.

    3). Трехосновные кислоты - это кислоты, в состав которых входит три иона (Н +): H 3 PO 4 - фосфорная кислота; H3BO3 - борная кислота; H 3 AsO 4 - мышьяковая кислота; H 3 PO 3 S - тиофосфорная кислота; H 3 AlO 3 - ортоалюминиевая кислота; H 3 PO 3 - фосфористая (фосфоновая) кислота.

    4). Многоосновные (полиосновные) кислоты - это кислоты, в состав которых входит четыре и более ионов (Н +): H 4 SiO 4 - ортокремниевая кислота; H 4 CO 4 - ортоугольная кислота; H 4 P 2 O 7 - дифосфорная (пирофосфорная) кислота; Н 6 P 6 O 18 - гексафосфорная кислота; H 6 TeO 6 - теллуровая кислота.

    Другие классификации кислот:

    По силе кислот:
    Сильные кислоты - диссоциируют практически полностью, константы диссоциации больше 1 . 10 -3 (HNO 3); HCl; H 2 SO 4);
    Слабые кислоты - константа диссоциации меньше 1 . 10 -3 (уксусная кислота Kд = 1,7 . 10 -5).

    По устойчивости:
    Устойчивые кислоты (H 2 SO 4);
    Неустойчивые кислоты (H 2 CO 3).

    По принадлежности к классам химических соединений:
    Неорганические кислоты: (HBr); (H 2 SO 4);
    Органические кислоты: (HCOOH,CH3COOH).

    По летучести:
    Летучие кислоты: (HNO 3 ,H 2 S);
    Нелетучие кислоты: (H 2 SO 4).

    По растворимости в воде:
    Растворимые кислоты (H 2 SO 4);
    Нерастворимые кислоты (H 2 SiO 3).

    Соли.

    Солями называются вещества, в которых атомы металла связаны с кислотными остатками. Исключением являются соли аммония, в которых с кислотными остатками связаны не атомы металла, а частицы NH4+, например, (NH4)2SO4 – сульфат аммония.

    Классификация солей:

    1). Средние соли.
    Средние соли - это сложные вещества, которые в водных растворах диссоциируют на катионы металлов и анионы кислотных остатков, т.е. они являются продуктами замещения всех катионов водорода в молекулах кислоты на катионы металла (Na 2 CO 3 , K 3 PO 4).

    2). Кислые соли.
    Кислые соли - это продукты частичного замещения катионов водорода в кислотах на катионы металла (NaHCO 3 , KH 2 PO 4 , K 2 HPO 4). Они образуются при нейтрализации основания избытком кислоты (то есть в условиях недостатка основания или избытка кислоты).

    3). Основные соли.
    Основные соли - это продукты неполного замещения гидроксогрупп основания (OH -) кислотными остатками (CuOH) 2 CO 3 , CoNO 3 (OH). Они образуются в условиях избытка основания или недостатка кислоты.

    4). Комплексные соли.
    Комплексные соли - соли, имеющие сложные катионы или анионы, в которых связь образована по донорно-акцепторному механизму. Комплексные ионы, соединяясь с другими ионами, образуют комплексные соли, например, K 4 , Cl, K 2 , (Na 2 ) и др.

    Классификация солей по числу присутствующих в структуре катионов и анионов

    Вывыделяют следующие типы солей:

    1). Простые соли.
    Простые соли - это соли, состоящие из одного вида катионов и одного вида анионов (NaCl).

    2). Двойные соли.
    Двойные соли - это соли, содержащие два различных типа катионов. примером двойных солей являются (KAl(SO 4) 2 . 12H 2 O) (алюмокалиевые квасцы), KAl(SO4) 2 (сульфат алюминия-калия), MgK 2 (SO4) 2 , AgK(CN) 2 . Двойные соли существуют только в твердом виде.

    3). Смешанные соли.
    Смешанные соли - это соли, в составе которых присутствует два различных аниона (Ca(OCl)Cl), Fe(NH 4) 2 (SO 4) 2 [сульфат диаммония-железа(II)], LiAl(SiO 3) 2 (метасиликат алюминия-лития), Ca(ClO)Cl (хлорид-гипохлорит кальция), Na 3 CO 3 (HCO 3) (гидрокарбонат-карбонат натрия), Na 2 IO 3 (NO 3) (нитрат-иодат натрия)

    4). Гидратные соли (кристаллогидраты).
    Гидратные соли или кристаллогидраты - это соли, в состав которых входят молекулы кристаллизационной воды, например, Na 2 SO 4 ·10 H 2 O, CaSO 4 · 2H 2 O (гиппс), MgCl 2 · KCl· 6H 2 O (карналлит), CuSO 4 · 5H 2 O (медный купорос), FeSO 4 · 7H 2 O (железный купорос), Na 2 CO 3 · 10H 2 O (кристаллическая сода).

    5). Внутренние соли.
    Внутренние соли - это соли, которые образованы биполярными ионами, то есть молекулами, содержащими как положительно заряженный, так и отрицательно заряженный атом (+) NН 3 -CH 2 -COO (-) (биполярный ион аминокислоты глицина), (+) NH 3 -C 6 H 4 -SO 3 (-) (сульфаниловая кислота или таурин). Таурин - сульфокислота, образующаяся в организме из аминокислоты цистеина.

    Во-первых, все неорганические вещества делятся на простые и сложные. Простые вещества - это вещества, состоящие из атомов одного химического элемента. Иными словами, это форма существования элементов в свободном виде. Все остальные вещества являются сложными.

    Простые:

    1) Неметаллы: H 2 , O 2 , O 3 , N 2 , F 2 , He и др. Всего в периодической таблице химических элементов присутствуют 22 неметалла. В обычных условиях они могут быть в твердом состоянии (I 2), жидком (Br 2) или газообразном (H 2 , O 2 , F 2 , Cl 2 и другие).
    2) Металлы: Na, Ag, Fe, Be и другие. Единственным жидким металлом является ртуть (Hg).

    Сложные:

    1) Оксиды - соединения, состоящие из двух элементов, один из которых кислород в степени окисления -2.

    • Основные
      Оксиды металлов в степени окисления +1 и +2 за исключением ZnO, BeO, PbO, SnO:
      Li 2 O, Na 2 O, K 2 O, CaO, MgO, RaO, SrO и др.
    • Амфотерные
      Оксиды металлов в степени окисления +3 и +4, а также ZnO, BeO, PbO, SnO:
      ZnO, BeO, PbO, SnO, Al 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , MnO 2 , PbO 2 , SnO 2 и др.
    • Кислотные
      Оксиды металлов в степени окисления +5, +6, +7, а также оксиды всех неметаллов кроме CO, NO, N 2 O и SiO:
      CO 2 , P 2 O 5 , SO 2 , SO 3 , NO 2 , CrO 3 и др.
    • Несолеобразующие
      CO, NO, N 2 O и SiO

    2) Пероксиды - сложные вещества, в которых атомы кислорода соединены друг с другом и находятся в степени окисления -1.

    • H 2 O 2 - пероксид водорода (перекись водорода)
    • Na 2 O 2 - пероксид натрия
    • BaO 2 - пероксид бария

    3) Гидроксиды

    • Основания: растворимые (NaOH, KOH И др.) и нерастворимые (Mg(OH) 2 , Cu(OH) 2 , Fe(OH) 2 , Cr(OH) 2 и др.)
    • Амфотерные гидроксиды (Zn(OH) 2 , Be(OH) 2 , Al(OH) 3 , Fe(OH) 3 , Cr(OH) 3 и др.)
    • Кислородсодержащие кислоты (HNO 3 , H 2 SO 4 , H 2 SO 3 , H 2 CO 3 , H 3 PO 4 и др.)

    4) Соли - сложные вещества, состоящие из катиона(ов) металла (или катиона аммония NH 4 +) и аниона(нов) кислотного остатка.

    • Средние (NaNO 3 , CaSO 4 , Cu(NO 3) 2 и др.)
    • Кислые - содержат H (NaHSO 4 , KHSO 3 , CaHPO 4 и др)
    • Основные - содержат группу OH ((CuOH) 2 CO 3 , MgOHBr, ZnOHCl и др.)
    • Двойные - содержат два типа катионов (KAl(SO 4) 2)
    • Смешанные - содержат два типа анионов (CaClBr)
    • Комплексные - состоят из катиона и комплексного аниона (Na 2 , SO 4 , Cl и др.)

    5) Бинарные неорганические соединения

    • Карбиды (CaC 2 , Al 4 C 3 и др.)
    • Фосфиды (Na 3 P, Ca 3 P 2 и др.)
    • Силициды (Mg 2 Si, Ca 2 Si и др.)

    6) Водородные соединения (также являются бинарными соединениями)

    • Гидриды - соединения щелочных и щелочно-земельных металлов с водородом (NaH, CaH 2 и др.)
    • Летучие водородные соединения - соединения неметаллов с водородом (CH 4 , SiH 4 , NH 3 , PH 3 , H 2 O, H 2 S, HF, HCl, HBr и HI и др.)

    «Классификация и номенклатура неорганических соединений»

    Важнейшими классами неорганических соединений являются оксиды, кислоты, основания и соли.

    Оксиды – это сложные вещества, состоящие из двух элементов, один из которых кислород в степени окисления (– 2).

    При написании формулы оксида символ элемента, образующего оксид, ставится на первое место, а кислорода – на второе. Общая формула оксидов: Эх Оу .

    Особую группу кислородных соединений элементов составляют пероксиды. Обычно их рассматривают как соли пероксида водорода Н2 О2 , проявляющего слабые кислотные свойства. У пероксидов атомы кислорода химически связаны не только с атомами других элементов, но и между собой (образуют пероксидную группу – О– О–). Например, пероксид натрия Na2 O2 (Na–O–O–Na), а оксид натрия Na2 O (Na–O–Na). В пероксидах степень окисления кислорода равна (–1). Так, в пероксиде бария BaO2 степень окисления бария равна +2, а кислорода –1.

    Названия оксидов

    Названия оксидов в соответствии с номенклатурными правилами образуются из слова «оксид» и названия оксидообразующего элемента в родительном падеже, например, СаО – оксид кальция, К2 О – оксид калия.

    В случае, когда элемент обладает переменной степенью окисления и образует несколько оксидов, после названия этого элемента указывают его степень окисления римской цифрой в скобках, или прибегают к помощи греческих числительных (1-моно, 2-ди, 3-три, 4-тетра, 5-пента, 6-гекса, 7-гепта, 8-окта). Например,

    VO – оксид ванадия (II) или монооксид ванадия;

    V2 O3 – оксид ванадия (III) или триоксид диванадия; VO2 – оксид ванадия (IV) или диоксид ванадия; V2 O5 – оксид ванадия (V) или пентаоксид диванадия.

    Классификация оксидов

    По реакционной способности оксиды можно разделить на солеобразующие и несолеобразующие (безразличные). В свою очередь, солеобразующие оксиды подразделяются на основные, кислотные и амфотерные.

    Солеобразующие оксиды

    Несолеобразующие

    Основные

    Кислотные

    Амфотерные

    Образуют неметаллы с

    небольшой степенью

    Образуют металлы

    Образуют металлы и

    Образуют металлы с

    окисления

    со степенью окисления

    неметаллы со

    промежуточной

    степенью окисления

    степенью окисления

    Например, NO, CO, N2 O,

    Например,

    Li2 O, CaO

    Например,

    Например,

    Данная группа оксидов

    Mn2 O7 , CrO3

    ZnO, Al2 O3 , SnO, BeO,

    не проявляет ни

    As2 O3 , Fe2 O3

    основных, ни кислотных

    свойств и не образуют

    Основные оксиды. Получение основных оксидов и их химические свойства

    Основными называются такие оксиды, которым соответствуют основания. Например, Na2 O, CaO являются основными оксидами, так как им соответствуют основания NaOH, Ca(OH)2 .

    Получение основных оксидов

    1. Взаимодействие металла с кислородом. Например: 4 Li + O 2 → 2 Li2 O.

    2. Разложение при нагревании кислородных соединений: карбонатов, нитратов, оснований. Например:

    MgCO3 ¾¾® MgO + CO2 - ;

    2Cu(NO3 )2 ¾¾® 2CuO + 4NO2 - + O2 - ;

    Ca(OH)2 ¾¾® CaO + H2 O .

    Химические свойства основных оксидов

    1. Взаимодействие с водой. По отношению к воде основные оксиды делятся на растворимые и нерастворимые. Растворимые – это оксиды щелочных металлов (Li2 O, Na2 O, K2 O, Rb2 O, Cs2 O) и щелочноземельных металлов (CaO,SrO, BaO). Растворяясь в воде, оксиды щелочных и щелочноземельных металлов образуют растворимые в воде основания, называемые щелочами. К нерастворимым в воде относятся оксиды остальных металлов. Например:

    Na2 O + H2 O → 2NaOH;

    CaO + H2 O → Ca(OH)2 .

    2. Основные оксиды взаимодействуют с кислотами, образуя соль и воду. Например: CaO + H2 SO4 → CaSO4 + H2 O

    3. Основные оксиды взаимодействуют с кислотными, образуя при этом соль. Например:

    СаO + SO3 → CaSO4

    Кислотные оксиды. Получение кислотных оксидов и их химические свойства

    Кислотными называются такие оксиды, которым соответствуют кислоты. Например, CO2 , P2 O5 , SO3 являются кислотными оксидами, так как им соответствуют кислоты H2 CO3 , H3 PO4 , H2 SO4 .

    Получение кислотных оксидов

    1. Горение неметалла. Например: S + O 2 → SO2 ;

    2. Горение сложных веществ. Например: СН 4 + 2О2 → СО2 + 2 Н2 О;

    3. Разложение при нагревании кислородных соединений: карбонатов, нитратов, гидроксидов. Например:

    CaCO3 ¾¾® CaO + CO2 - ;

    2AgNO3 ¾¾® 2Ag + 2NO2 - + O2 - .

    Химические свойства кислотных оксидов

    1. Взаимодействие с водой. Большинство кислотных оксидов непосредственно реагируют с водой, образуя при этом кислоту. Исключения составляют лишь оксиды кремния (SiO2 ), теллура (TeO2 , TeO3 ), молибдена и вольфрама (MoO3 , WO3 ). Например:

    СO2 + H2 O ↔ Н2 СО3

    2. Кислотные оксиды взаимодействуют с основаниями, образуя соль и воду. Например: SO3 + 2 NaOH → Na2 SO4 + H2 O

    3. Кислотные оксиды взаимодействуют с основными, образуя при этом соль. Например: 3CaO + P2 O5 → Ca3 (PO4 )2

    4. Летучие кислотные оксиды способны вытеснять более летучие из их солей. Например, нелетучий кислотный оксид кремния (IV) вытесняет летучий кислотный оксид СО2 из его соли СaCO3 + SiO2 → CaSiO3 + CO2 - .

    Амфотерные оксиды

    Амфотерными называются такие оксиды, которые в зависимости от условий проявляют основные или кислотные свойства, то есть обладают двойственными свойствами.

    1. Амфотерные оксиды не взаимодействуют с водой.

    2. Амфотерные оксиды взаимодействуют с кислотами. Например:

    Al2 O3 + 6 HCl → 2 AlCl3 + 3 H2 O

    3. Амфотерные оксиды взаимодействуют с основаниями. Например:

    Al2 O3 + 2 NaOH ¾¾® 2 NaAlO2 + H2 O Al2 O3 + 2NaOH + 3H2 O ® 2Na

    4. Амфотерные оксиды взаимодействуют с основными и кислотными оксидами.

    Al2 O3 + 3 SO3 ¾¾® Al2 (SO4 )3

    Al2 O3 + Na2 O ¾¾® 2 NaAlO2

    Гидроксиды – это сложные многоэлементные химические соединения, в состав которых входят атомы какого-либо элемента, кислорода и водорода. Химический характер гидроксидов определяется свойствами соответствующих им оксидов. Поэтому гидроксиды делятся на три большие группы:

    1. Гидраты кислотных оксидов, называемые кислотами, например, H 2 SO4 .

    2. Гидраты основных оксидов, называемые основаниями, например, Ba(OH) 2 .

    3. Гидраты амфотерных оксидов, называемые амфотерными гидроксидами, например, Be(OH) 2 .

    Основания Основания – это электролиты, диссоцирующие в водном растворе с образованием

    катиона металла (или иона аммония NH4 + ) и гидроксогруппы ОН– . Названия оснований

    Общая формула оснований: Мe(ОН)n . Согласно международной номенклатуре названия оснований составляются из слова гидроксид и названия металла. Например, NaOH – гидроксид натрия, Ca(OH)2 – гидроксид кальция. Если элемент образует несколько оснований, то в названии указывается степень его окисления римской цифрой в скобках: Fe(OH)2 – гидроксид железа (II), Fe(OH)3 – гидроксид железа (III).

    Помимо этих названий для некоторых наиболее важных оснований применяются и другие, в основном традиционные русские названия. Например, гидроксид натрия NaOH называют едким натром, гидроксид кальция Ca(OH)2 – гашеной известью, КОН – едким кали.

    Число ОН– -групп, содержащихся в молекуле основания, определяет его кислотность. По этому признаку основания делятся на однокислотные (КОН), двухкислотные (Cu(OH)2 ), трехкислотные

    (Cr(OH)3 ).

    Гидроксиды, растворимые в воде, называют щелочами. Это гидроксиды щелочных и щелочно-

    земельных металлов: NaOH, KOH, RbOH, CsOH, Ba(OH)2 , Ca(OH)2 , Sr(OH)2 .

    Способы получения щелочей и оснований

    1. Растворимые в воде основания (щелочи) получают при взаимодействии щелочных и щелочно-земельных металлов с водой.

    2Na + 2Н2 O → 2NaOH + H2 -

    2. Растворимые в воде основания (щелочи) получают при взаимодействии оксидов щелочных и щелочно-земельных металлов с водой.

    Na2 O + H2 O → 2NaOH

    3. Щелочи можно получить электролизом водных растворов соответствующих солей (Например, гидроксид натрия можно получить электролизом раствора соли NaCl).

    2 NaCl + 2 H2 O → 2 NaOH + H2 - + Cl2 - Катод: 2 H2 O + 2e– → H2 + 2 OH– Анод: 2 Cl– – 2e – → Cl2

    4. Малорастворимые или нерастворимые в воде основания получают путем взаимодействия растворов соответствующих солей с растворами щелочей. Например:

    CuSO4 + 2 NaOH → Cu(OH)2 ¯ + Na2 SO4

    Химические свойства оснований

    Основания в большинстве случаев представляют собой твердые вещества. По отношению к воде их модно разделить на две группы: растворимые в воде – щелочи и нерастворимые в воде. Растворы щелочей мыльные на ощупь. Изменяют окраску индикаторов: лакмуса в синий цвет, фенолфталеина – в малиновый, метилового оранжевого – в желтый цвет.

    1. Электролитические свойства оснований. Одно из наиболее характерных свойств оснований – электролитическая способность к диссоциации в жидком состоянии. При диссоциации основания образуется гидроксогруппа ОН– и основной остаток – катион.

    Диссоциация оснований, содержащих одну гидроксогруппу ОН– , протекает в одну ступень:

    КОН ↔ К+ + ОН– .

    Основания, содержащие несколько гидроксогрупп в молекуле, диссоциируют ступенчато, с постепенным отщеплением ионов OH– .

    Катион, образующийся после отщепления от молекулы гидроксида одной или несколько гидроксид-ионов, называется основным остатком. Количество основных остатков, соответствующих данному гидроксиду, равно числу гидроксогрупп OH– в составе молекулы гидроксида.

    Название основного остатка образуется из русского названия металла в составе остатка с добавлением слова «ион». Если остатки содержат одну или две гидроксогруппы, к названию металла добавляются приставки «гидроксо» или «дигидроксо».

    (мыльность на ощупь, изменение цвета индикаторов, взаимодействие с кислотами, кислотными оксидами, солями) обусловлены наличием гидроксид-ионов в их составе.

    2. Взаимодействие с кислотами. Это реакция нейтрализации, приводящая к образованию соли

    и воды:

    2 NaOH + H 2 SO4 → Na2 SO4 + H2 O.

    3. Щелочи взаимодействуют с кислотными оксидами:

    Ca(OH)2 + CO2 → CaCO3 + H2 O.

    4. Щелочи взаимодействуют с растворами солей. Данное взаимодействие осуществляется, если после реакции образуются труднорастворимые или слабые основания. Например:

    2 КОН + CuSO 4 → Cu(OH)2 ¯ + K2 SO4 .

    5. При нагревании нерастворимые основания разлагаются на оксид и воду. Например:

    2 Fe(OH)3 ¾¾® Fe2 O3 + 3 H2 O.

    Амфотерные гидроксиды

    Амфотерность гидроксидов понимается как способность плохо растворимых гидроксидов металлов проявлять кислотные или основные свойства в зависимости от характера кислотноосновного взаимодействия. Амфотерными являются следующие гидроксиды: Al(OH)3 , Zn(OH)2 , Cr(OH)3 , Be(OH)2 , Ge(OH)2 , Sn(OH)4 , Pb(OH)2 и др.

    Формула амфотерного гидроксида, как правило, записывается по формуле основания Ме(ОН)n , но ее можно представить и в виде кислоты Нn MеOm . Например, Zn(OH)2 – гидроксид цинка или H2 ZnO2 – цинковая кислота; Al(OH)3 – гидроксид алюминия или НAlO2 – метаалюминиевая кислота (Н3 AlO3 – ортоалюминиевая кислота).

    Химические свойства амфотерных гидроксидов

    В силу своей двойственности амфотерные гидроксиды способны реагировать как с кислотами, так и со щелочами.

    1. При взаимодействии с сильными кислотами образуются соль и вода; при этом амфотерный гидроксид проявляет основные свойства.

    2. При взаимодействии с сильными основаниями (щелочами) образуются соль и вода; при этом амфотерный гидроксид проявляет кислотные свойства и в уравнении должна быть использована его кислотная форма.

    H2 ZnO2 + 2 NaOH → Na2 ZnO2 + 2 H2 O

    цинкат натрия

    НAlO2 + NaOH ¾¾® NaAlO2 + H2 O (сплавление)

    метаалюминат натрия 3. С водными растворами щелочей амфотерные гидроксиды образуют комплексные

    соединения:

    Zn(OH)2 + 2 NaOH → Na2

    Амфотерные гидроксиды – нерастворимые соединения. Получение амфотерных гидроксидов возможно лишь косвенно – путем взаимодействия щелочей с солями соответствующих металлов.

    Кислоты Кислоты – это электролиты, диссоцирующие в водном растворе с образованием катиона

    водорода Н+ и аниона кислотного остатка.

    Названия кислот

    В общем виде формула кислоты записывается как Нm Э или Нm ЭОn , где Э – кислотообразующий элемент.

    По химическому составу, а именно по отсутствию или наличию атомов кислорода в молекулах, кислоты делятся на кислородсодержашие (H2 SO4 , HNO3 ) и бескислородные (H2 S, HF, HCl).

    Кислоты имеют традиционные и систематические названия, составляемые по номенклатурным правилам ИЮПАК для сложных соединений.

    Традиционное название кислоты складывается из двух слов. Первое слово – прилагательное с корнем от русского названия кислотообразующего элемента, второе – слово «кислота», например, серная кислота, азотная кислота. В названиях кислородосодержащих кислот для обозначения степени окисления кислотообразующего элемента используются следующие суффиксы:

    – н, – ов, – ев – (высшая или любая единственная степень окисления), как HClO4 – хлорная, H2 SO4 – серная, HMnO4 – марганцовая кислота; H2 SiO3 – метакремниевая кислота.

    новат – (промежуточная степень окисления +5), как HClO 3 – хлорноватая, HIO3 – йодноватая, H2 MnO4 – марганцоватая кислота.

    овист, – ист – (промежуточная степень окисления +3, +4), как H 3 AsO3 – ортомышьяковистая

    кислота; HClO2 – хлористая; HNO2 – азотистая.

    – новатист – (низшая положительная степень +1), как HClO – хлорноватистая.

    Если элемент в одной и той же степени окисления образует несколько кислородосодержащих кислот, то к названию кислоты с меньшим содержанием кислородных атомов добавляют префикс «мета», при наибольшем числе – префикс «орто»: НРО3 – метафосфорная кислота, Н3 РО4 – ортофосфорная кислота (степень окисления фосфора равна +5).

    Названия бескислородных кислот

    производятся от названия неметалла с окончанием «о» и

    прибавлением слова водородная:

    HF – фтороводородная или плавиковая кислота

    HCl – хлороводородная или соляная кислота

    Названия кислот и кислотных остатков

    Название кислоты

    Кислотный остаток

    Название

    Азотистая

    HNO2

    NO2 –

    Нитрит-ион

    HNO3

    NO3 –

    Нитрат-ион

    Ортоборная

    H3 BO3

    BO3 3–

    Ортоборат-ион

    Метакремниевая

    H2 SiO3

    SiO3 2–

    Метасиликат-ион

    Марганцовая

    HMnO4

    MnO4 –

    Перманганат-ион

    Ортомышьяковая

    H3 AsO4

    AsO4 3–

    Ортоарсенат-ион

    Ортомышьяковистая

    H3 AsO3

    AsO3 3–

    Ортоарсенит-ион

    H2 SO4

    SO4 2–

    Сульфат-ион

    Сернистая

    H2 SO3

    SO3 2–

    Сульфит-ион

    Сероводородная

    S 2–

    Сульфид-ион

    Тиосерная

    H2 S2 O3

    S2 O3 2–

    Тиосульфат-ион

    Угольная

    H2 CO3

    CO3 2–

    Карбонат-ион

    Метафосфорная

    НРО3

    РО3 –

    Метафосфат-ион

    Ортофосфорная

    Н3 РО4

    РО4 3–

    Ортофосфат-ион

    Двуфосфорная

    H4 P2 O7

    P2 O7 4–

    Дифосфат

    (пирофосфорная)

    (пирофосфат)

    Фосфористая

    H3 PO3

    PO3 3–

    Фосфит-ион

    HClO4

    ClO4 –

    Перхлорат-ион

    Хлористая

    HClO2

    ClO2 –

    Хлорит-ион

    Хромовая

    H2 CrO4

    CrO4 2–

    Хромат-ион

    Хлороводородная

    Cl–

    Хлорид-ион

    Бромоводородная

    Br–

    Бромид-ион

    Иодоводородная

    J–

    Иодид-ион

    Уксусная

    СН3 СООН

    СН3 СОО–

    Ацетат-ион

    Циановодородая

    CN–

    Цианид-ион

    Способы получения кислот

    1. Взаимодействие кислотного оксида с водой. Например: SO2 + H2 O → H2 SO3

    Исключение составляют SiO2 , TeO2 , TeO3 , MoO3 , WO3 , которые с водой не взаимодействуют. 2. Если кислотный оксид не растворим в воде, то соответствующие им кислоты получают

    косвенным путем, а именно, действием другой кислоты на соответствующую соль. Например:

    Na2 SiO3 + H2 SO4 → Na2 SO4 + H2 SiO3 ↓

    3. Бескислородные кислоты получают путем взаимодействия неметаллов с водородом с последующим растворением продуктов в воде. Например:

    Н 2(г) + Cl 2(г) → 2 HCl (г)

    Химические свойства кислот

    Кислоты представляют собой жидкости (Н2 SO4 , HNO3 ) или твердые вещества (H3 PO4 ). Многие кислоты хорошо растворимы в воде. Водные растворы кислот имеют кислый вкус и изменяют цвет индикаторов: лакмусу придают красный цвет, метиловому оранжевому – розовый.

    1. Электролитические свойства кислот. Согласно теории электролитической диссоциации кислотами называют вещества, диссоцирующие в водных растворах с образованием ионов водорода Н+ , которыми обусловлены все общие свойства кислот (кислый вкус растворов, окрашивание лакмуса в красный цвет, взаимодействие с металлами и т.д.).

    Число ионов водорода кислоты, способных замещаться на катионы металлов, определяет основность этой кислоты и число ступеней диссоциации. Так HCl, H2 SO4 , H3 PO4 – пример одно-, двух- и трехосновных кислот.

    Диссоциация одноосновной хлороводородной кислоты HCl происходит в одну ступень: HCl ↔ H+ + Cl–

    Ей соответствует один кислотный остаток – хлорид-ион Cl– .

    Угольная кислота, являясь двухосновной кислотой, диссоциирует в две ступени с образованием кислотных остатков:

    Н2 СО3

    ↔ Н+

    НСО3 –

    гидрокарбонат-ион

    НСО3 –

    ↔ Н+

    СО3 2–

    карбонат-ион

    Ортофосфорная кислота Н3 РО4 диссоциирует в три ступени с образованием трех кислотных

    остатков:

    Н3 РО4 ↔ Н+ + Н2 РО4 –

    дигидроортофосфат-ион

    Н2 РО4 – ↔ Н+ + НРО4 2–

    гидроортофосфат-ион

    НРО4 2– ↔ Н+ + РО4 3–

    ортофосфат-ион

    Если кислотный остаток содержит один водород-ион, то к его названию прибавляется приставка «гидро», если два водородных иона– « дигидро».

    2. Взаимодействие с основаниями, в результате образуется соль и вода. HCl + NaOH → NaCl + H2 O

    3. Взаимодействие с основными оксидами.

    2 HCl + CaO → CaCl 2 + H2 O

    4. Взаимодействие с солями. Кислоты вступают в реакцию с солями, если в результате ее

    образуется более слабая кислота, малорастворимое или летучее соединение.

    H2 SO4 + BaCl2 → BaSO4 ↓ + 2 HCl

    4. Взаимодействие кислот с металлами (с образованием соли и выделением водорода).

    2 HCl + Fe → FeCl2 + H2 −

    Металлы, имеющие стандартный электродный потенциал больше водорода, с кислотами не взаимодействуют. При взаимодействии металлов с концентрированной серной кислотой, концентрированной и разбавленной азотной кислотой водород не выделяется.

    Соли Соли – это электролиты, диссоцирующие в водном растворе с образованием катионов

    основных остатков и анионов кислотных остатков. Формулы и названия солей

    Состав соли описывается формулой, в которой на первое место ставится формула катиона, а на второе – формула аниона. Названия солей образуются от названия кислотного остатка (в именительном падеже) и названия основного остатка (в родительном падеже), входящих в состав соли. Степень окисления металла, образующего катион, указывается римскими цифрами в скобках, если это необходимо. Например, K2 S – сульфид калия, FeSO4 – сульфат железа (II), Fe2 (SO4 )3 – сульфат железа (III).

    Анион бескислородной кислоты имеет окончание «ид». Например, FeCl3 – хлорид железа (III). Названия кислых солей образуются также, как и средних, но при этом к названию аниона добавляют приставку «гидро», указывающую на наличие атомов водорода, число которых обозначается греческими числительными: ди, три и.т.д. Например: Fe(HSO4 )3 – гидросульфат

    железа (III), NaH2 PO4 – дигидрофосфат натрия.

    Названия основных солей образуются также, как и средних, но при этом к названию катиона добавляют приставку «гидроксо», указывающую на наличие гидроксогрупп, число которых обозначается греческими числительными: ди, три и.т.д. Например: (CuOH)2 CO3 – карбонат гидроксомеди (II), Fe(OH)2 Cl – хлорид дигидроксожелеза (III).

    Соли подразделяются на средние, кислые и основные.

    Средние (нормальные) соли не содержат в молекуле ни атомов водорода, ни гидроксогрупп. Они диссоциируют практически полностью (не ступенчато), образуя катионы металла и анионы кислотного остатка:

    K2 S ↔ 2 K+ + S2– AlCl3 ↔ Al3+ + 3 Cl–

    Средние соли можно получить при полном замещении атомов водорода в молекулах кислот атомами металлов или при полном замещении гидроксогрупп в основаниях на кислотные остатки. Например:

    Zn(OH)2 + H2 SO4 → ZnSO4 + 2 H2 O

    Кислые соли – это соли, кислотный остаток которых содержит в своем составе водород, например, KHS, Fe(HSO4 )3 . Такие соли диссоциируют ступенчато. Вначале (по I ступени) происходит полная диссоциация соли на катионы металла и анионы кислотного остатка:

    KHS ↔ K+ + HS– (полная диссоциация)

    Затем кислотный остаток диссоциирует в меньшей степени (частично), ступенчато отщепляя катионы водорода:

    HS– ↔ H+ + S2– (частичная диссоциация)

    По своим свойствам кислые соли являются промежуточными соединениями межу средними солями и кислотами. Так же, как кислоты, они обычно хорошо растворимы в воде и способны к реакции нейтрализации.

    Кислые соли образуются только многоосновными кислотами в случае неполного замещения атомов водорода в кислоте на атомы металла (избыток кислоты). Например:

    NaOH + H2 SO4 → NaHSO4 + H2 O

    гидросульфат натрия

    Одноосновные кислоты (HCl, HNO3 ) кислых солей не образуют.

    Основные соли – это соли, катионы которых содержат одну или несколько гидроксогрупп,

    например, (CuOH)2 CO3 , (FeOH)Cl2 .

    Основные соли так же, как и кислые, диссоциируют ступенчато. По I ступени идет полная диссоциация на катионы основного остатка и анионы кислотного, а затем идет частичная диссоциация основного остатка. Например, карбонат гидроксомеди (II) полностью диссоциирует по первой ступени:

    (CuOH)2 CO3 ↔ 2 CuOH+ + CO3 2– , (полная диссоциация)

    затем основный остаток частично диссоциирует как слабый электролит на ионы: CuOH+ ↔ Cu2+ + OH– (частичная диссоциация)

    Как правило, основные соли малорастворимы и при нагревании разлагаются с выделением воды.

    Основные соли образуются только многокислотными основаниями в случае неполного замещения гидроксогрупп основания на кислотные остатки (избыток основания). Например: Mg(OH)2 + HCl → MgOHCl + H2 O

    хлорид гидроксомагния

    Получение солей

    Средние соли могут быть получены при взаимодействии веществ:

    1. металла с неметаллом. Например: Fe + S → FeS

    2. металла с кислотой. Например:

    Zn + 2 HCl → ZnCl2 + H2 −

    3 Zn + 4 H2 SO4(конц.) → 3 ZnSO4 + S + 4 H2 O

    3. основного оксида с кислотой. Например: CuO + H2 SO4 → CuSO4 + H2 O

    4. кислотного оксида с основаниями. Например: CO 2 + Ca(OH)2 → CaCO3 + H2 O

    5. основания с кислотой (реакция нейтрализации). Например: Ca(OH) 2 + 2 HCl → CaCl2 + 2 H2 O

    6. двух различных солей. Например:

    Na2 SO4 + BaCl2 → BaSO4 ↓ + 2 NaCl

    7. щелочей с солями. Например: 3 KOH + FeCl 3 → 3 KCl + Fe(OH)3 ↓

    8. вытеснение пассивного металла из раствора его соли более активным металлом (в соответствии с рядом напряжений металлов). Например:

    Fe + CuSO4 → FeSO4 + Cu

    9. взаимодействием кислотного оксида с основным. Например:

    CaO + SiO2 → CaSiO3

    Кислые соли могут быть получены:

    1. при взаимодействии снования с избытком кислоты или кислотного оксида. Например: Pb(OH)2 + 2 H2 SO4 → Pb(HSO4 )2 + 2 H2 O

    Ca(OH)2 + 2 CO2 → Ca(HCO3 )2

    2. при взаимодействии средней соли с кислотой, кислотный остаток которой входит в состав этой соли. Например:

    PbSO4 + H2 SO4 → Pb(HSO4 )2

    Основные соли получаются:

    1. при взаимодействии кислоты с избытком основания. Например: HCl + Mg(OH) 2 → MgOHCl + H2 O

    2. при взаимодействии средней соли со щелочью:

    Bi(NO3 )3 + 2 NaOH → Bi(OH)2 NO3 + 2 NaNO3

    Кислые или основные соли образуются при гидролизе средних солей: Na2 CO3 + H2 O → NaHCO3 + NaOH

    Al2 (SO4 )3 + H2 O → 2 AlOHSO4 + H2 SO4

    Химические свойства солей

    1. В ряду стандартных электродных потенциалов каждый предыдущий металл вытесняет последующие из растворов их солей. Например:

    Zn + Hg(NO3 )2 → Zn(NO3 )2 + Hg

    2. Соли взаимодействуют со щелочами. Например:

    CuSO4 + 2 NaOH → Cu(OH)2 ↓ + Na2 SO4

    3. Соли взаимодействуют с кислотами: CuSO 4 + H2 S → CuS↓ + H2 SO4

    4. Многие соли взаимодействуют между собой:

    CaCl2 + Na2 CO3 → CaCO3 ↓ + 2 NaCl

    При составлении химический уравнений реакций нужно помнить, что реакция протекает, если один из образующихся продуктов выпадает в виде осадка, выделяется виде газа или представляет собой малодиссоциированное соединение.

    Превращение кислых и основных солей в средние

    1. Взаимодействие кислой соли с гидроксидом того же металла: KHSO4 + KOH → K2 SO4 + H2 O

    2. Взаимодействие кислой соли с солью того же металла, но другой кислоты: KHSO4 + KСl → K2 SO4 + HCl

    3. Термическое разложение кислых солей:

    Ca(HCO3 )2 → CaCO3 + CO2 − + H2 O

    4. Взаимодействие основной соли с соответствующей кислотой: 2 FeOHSO4 + H2 SO4 → Fe2 (SO4 )3 + 2 H2 O

    Степень окисления

    При классификации различных веществ, составления формул химических соединений и описании их свойств используется характеристика состояния атомов элементов – степень окисления. Степень окисления – это количественная характеристика состояния атома элемента в соединении.

    Степень окисления – это условный заряд атома в молекуле химического соединения, вычисленный исходя из предположения, что все молекулы химического соединения состоят из ионов, то есть общие электронные пары переходят к наиболее электроотрицательному элементу.

    Степень окисления может быть отрицательным, положительным числом или равняться нулю. Степень окисления обозначают арабскими цифрами со знаком (+) или (–) пред цифрой, и записывают над символом элемента в формуле химического соединения.

    Отрицательное значение степени окисления приписывается атому, притянувшему к себе электроны, и его величина, равная числу притянутых электронов, отмечается знаком (–).

    Положительное значение степени окисления определяется числом электронов оттянутых от данного атома, и отмечается знаком (+).

    При вычислении степеней окисления атомов используется следующая совокупность правил:

    1) в молекулах простых веществ степень окисления атома равна нулю;

    2) водород в соединениях с неметаллами имеет степень окисления (+1), исключение составляют гидриды, в которых степень окисления водорода равна (–1);

    3) кислород во всех сложных соединениях имеет степень окисления (–2), кроме OF2 и различных перекисных соединений.

    4) фтор, как наиболее электроотрицательный элемент, во всех соединениях имеет степень окисления (–1);

    5) галогены в соединениях с водородом и металлами проявляют отрицательную степень окисления (–1), а с кислородом – положительную, за исключением фтора.

    6) все металла в своих соединениях характеризуются только положительными степенями окисления, в том числе щелочные металлы имеют степень окисления (+1), а щелочно-земельные –

    7) сумма степеней окисления всех атомов в молекуле равна нулю, сумма степеней окисления всех атомов в сложном ионе равна заряду этого иона.