Строение ДНК: особенности, схема. Какое строение имеет молекула ДНК? Строение днк Основы цитологии

Молекулы нуклеиновых кислот всех ти­пов живых организмов - это длинные неразветвленные полимеры мононуклеотидов. Роль мостика между нуклеотидами выпол­няет 3",5"-фосфодиэфирная связь, соединяю­щая 5"-фосфат одного нуклеотида и 3"-гидроксильный остаток рибозы (или дезоксирибозы) следующего. В связи с этим полинуклеотидная цепь оказывается полярной. На одном ее конце остается свободной 5"-фосфатная группа, на другом 3"-ОН-группа.

ДНК, подобно белкам , имеет первич­ную, вторичную и третичную структуры.

Первичная структура ДНК . Данная структура определяет закодированную в ней информацию, представляя собой последова­тельность чередования дезоксирибонуклеотидов в полинуклеотидной цепи.

Молекула ДНК состоит из двух спиралей , имеющих одну и ту же ось, и противоположные направления. Сахарофосфатный остов располагается по периферии двойной спирали, а азотистые основания находятся внутри. Остов содержит ковалентные фосфодиэфирные связи , а обе спирали между основаниями соединены водородными связями и гидрофобными взаимодействиями.

Эти связи впервые были открыты и изучены Э.Чаргаффом в 1945 г. и получили название принципа комплементарности , а особенности образования водородных свзей между основаниями называются правилами Чаргаффа :

  • пуриновое основание всегда связывается с пиримидиновым: аденин - с тимином (А®Т), гуанин – с цитозином (Г®Ц);
  • молярное соотношение аденина к тимину и гуанина к цитозину равно 1 (А=Т, или А/Т=1 и Г=Ц, или Г/Ц=1);
  • сумма остатков А и Г равно сумме остатков Т и Ц, т.е. А+Г=Т+Ц;
  • в ДНК, выделенных из разных источников, отношение (Г+Ц)/(А+Т), называемое коэффициентом специфичности, неодинаково.

Правила Чаргаффа основаны на том, что аденин образует две связи с тимином, а гуанин образует три связи с цитозином:

На основании правил Чаргаффа можно представить двуспиральную структуру ДНК, которая приведена на рисунке.

А-форма В-форма

A-аденин, G-гуанин, C-цитозин, T-тимин

Схематическое изображение двуспиральной

молекулы ДНК

Вторичная структура ДНК . В соответствии с моделью, предложенной в 1953 г. Дж. Уотсоном и Ф. Криком, вторичная структура ДНК представляет собой двухцепочечную правозакрученную спираль из комплементарных друг другу антипараллельных полинуклеотидных цепей.

Для вторичной структуры ДНК решающим являются две особенности строения азотистых оснований нуклеотидов. Первая заключается в наличии групп, способных образовывать водородные связи. Вторая особенность заключается в том, что пары комплементарных оснований А-Т и Г-Ц оказываются одинаковы­ми не только по размеру, но и по форме.

Благодаря способности нуклеотидов к спариванию, образуется жесткая, хорошо стабилизированная двухцепочечная структура. Основные элементы и параметрические характеристики такой структуры наглядно изображены на рисунке.

На основе тщательного анализа рентгенограмм выделенных ДНК установ­лено, что двойная спираль ДНК может существовать в виде нескольких форм (А, В, С, Z и др.). Указанные формы ДНК различаются диаметром и шагом спирали, числом пар оснований в витке, углом наклона плоскости оснований по отношению к оси молекулы.


Третичная структура ДНК. У всех живых организмов двухспиральные молекулы ДНК плотно упакованы с образованием сложных трехмерных структур. Двухцепочечные ДНК прокариот, имеющие кольцевую ковалентно-замкнутую форму, образуют левые (-) суперспирали . Третичная структура ДНК эукариотических клеток также образуется пу­тем суперспирализации, но не свободной ДНК, а ее комплексов с белками хромосом (белки-гистоны классов Н1, Н2, Н3, Н4 и Н5).


В пространственной организации хромосом можно выделить несколько уровней. Первый уровень – нуклеосомный. В результате нуклеосомной организации хроматина двойная спираль ДНК диаметром 2 нм приобретает диаметр 10-11 нм и укорачивается примерно в 7 раз.

Вторым уровнем пространственной организации хромосом является обра­зование из нуклеосомной нити хроматиновой фибриллы диаметром 20- 30 нм (уменьшение линейных размеров ДНК еще в 6-7 раз).

Третичный уровень организации хромосом обусловлен укладкой хромати­новой фибриллы в петли. В образовании петель принимают участие негистоновые белки. Участок ДНК, со­ответствующий одной петле, содержит от 20 000 до 80 000 пар нуклеотидов. В результате такой упаковки линейные размеры ДНК уменьшаются при­мерно в 200 раз. Петлеобразная доменная организация ДНК, называемая ин­терфазной хромонемой, может подвергаться дальнейшей компактизации, сте­пень которой меняется в зависимости от фазы клеточного цикла.

Английские ученые Дж. Уотсон и Ф. Крик (1953) предложили пространственную модель молекулы ДНК. Согласно этой модели, макромолекула представляет собой спираль, состоящую из двух полинуклеотидных цепей, закрученных вокруг общей оси. Пуриновые и пиримидиновые основания направлены, внутрь спирали. Между пуриновым основанием одной цепи и пиримидиновым основанием другой возникают водородные связи. Эти основания составляют комплементарные пары:

А=Т (соединены двумя Н- связями), ГºЦ (три Н-связи).

Т.о., вторичная структура ДНК- это двойная спираль, образующаяся за счет Н- связей между комплементарными парами гетероциклических оснований и сил Ван дер Ваальса между азотистыми основаниями.

Водородные связи образуются между – NH группой одного основания и

, а также между амидными и имидными атомами азота

Н-связи стабилизируют двойную спираль.

Комплементарность цепей – химическая основа важнейших функций ДНК– хранения и передачи наследственных признаков. В ДНК содержатся всего четыре основания (А, Г, Ц, Т). Кодирующей единицей для каждой АК белка является триплет (код из трех оснований). Участок молекулы ДНК, содержащий в последовательности своих нуклеотидов информацию о последовательности аминокислотных звеньев в синтезируемом белке, называют геном. В макромолекуле ДНК содержится много генов.

Однако нуклеотидная последовательность ДНК под действием различных факторов может подвергаться изменениям, которые называют мутациями . Наиболее распространенный вид мутации – замена какой-либо пары оснований на другую. Причина – сдвиг таутомерного равновесия. Например, замена обычной пары Т-А на пару Т-Г. При накоплении мутаций возрастает число ошибок в биосинтезе белка. Вторая причина возникновения мутации – химические факторы, а также различные виды излучений. Мутации под действием химических соединений имеют большое значение для управления наследственностью с целью ее улучшения – селекция сельскохозяйственных культур, создание штаммов микроорганизмов, производящих антибиотики, витамины, кормовые дрожжи.

Макромолекула РНК, как правило, представляет собой одну полипептидную цепь, принимающую различные пространственные формы, в том числе и спиралеобразные.

Молекулы ДНК находятся в ядрах клеток, а синтез белка осуществляется в цитоплазме на рибосомах при участии РНК, которые копируют генетическую информацию, переносят ее к месту синтеза белка, участвуют в процессе синтеза белка.

Нуклеотиды имеют большое значение не только как строительный материал для НК. Они участвуют в биохимических процессах, например в энергетическом обмене клетки (АТФ), переносе фосфатных групп, в окислительно-восстановительных р-циях и др.

Успехи в изучении строения НК и их функции привели к развитию новой ветви биологический науки – генной инженерии, позволяющей управлять внутриклеточными процессами. Отсюда исключительные перспективы в решении проблем медицины (предупреждение и лечение болезней), промышленности (например, биотехнологии на основе использования новых микроорганизмов, которые, благодаря наличию новых генов, синтезируют новые соединения) и т.д. Эти научные достижения показывают, что в основе процессов жизнедеятельности организмов лежат реальные химические процессы, протекающие в клетках на молекулярном уровне.









Уотсон и Крик показали, что ДНК состоит из двух полинуклеотидных цепей. Каждая цепь закручена в спираль вправо, и обе они свиты вместе, т. е. закручены вправо вокруг одной и той же оси, образуя двойную спираль.

Цепи антипараллельны, т. е. направлены в противоположные стороны. Каждая цепь днк состоит из сахарофосфатного остова, вдоль которого перпендикулярно длинной оси двойной спирали располагаются основания; находящиеся друг против друга основания двух противоположных цепей двойной спирали связаны между собой водородными связями.

Сахарофосфатные остовы двух цепей двойной спирали хорошо видны на пространственной модели ДНК. Расстояние между сахарофосфатными остовами двух цепей постоянно и равно расстоянию, занимаемому парой оснований, т. е. одним пурином и одним пиримидином. Два пурина занимали бы слишком много места, а два пиримидина - слишком мало для того,чтобы заполнить промежутки между двумя цепями.

Вдоль оси молекулы соседние пары оснований располагаются на расстоянии 0,34 нм одна от другой, чем и объясняется обнаруженная на рентгенограммах периодичность. Полный оборот спирали приходится на 3,4 нм, т. е. на 10 пар оснований. Никаких ограничений относительно последовательности нук-леотидов в одной цепи не существует, но в силу правила спаривания оснований эта последовательность в одной цепи определяет собой последовательность нуклеотидов в другой цепи. Поэтому мы говорим, что две цепи двойной спирали комплементарны друг другу.

Уотсон и Крик опубликовали сообщение о своей модели ДНК в журнале « » в 1953 г., а в 1962 г. они вместе с Морисом Уилкинсом были удостоены за эту работу Нобелевской премии. В том же году получили Нобелевскую примию Кендрью и Перуц за свои работы по определению трехмерной структуры белков, также выполненные методом рентгеноструктурного анализа. Розалинду Франклин, умершую от рака ранее присуждения этих премий, не включили в число лауреатов, поскольку Нобелевская премия посмертно не присуждается.


Для того чтобы признать предложенную структуру генетическим материалом, требовалось показать, что она способна: 1) нести в себе закодированную информацию и 2) точно воспроизводиться (реплицироваться). Уотсон и Крик отдавали себе отчет в том, что их модель удовлетворяет этим требованиям. В конце своей первой статьи они сдержанно отметили: «От нашего внимания не ускользнуло, что постулированное нами специфическое спаривание оснований сразу же позволяет постулировать и возможный механизм копирования для генетического материала».

Во второй статье, опубликованной втом же 1953 г., они обсудили выводы, которые следовали из их модели, в генетическом плане. Это открытие, показавшее, сколь явно структура может быть связана с функцией уже на молекулярном уровне, дало мощный толчок развитию молекулярной биологии.

Аббревиатура клеточный ДНК многим знакома из школьного курса биологии, но мало кто сможет с легкостью ответить, что это. Лишь смутное представление о наследственности и генетике остается в памяти сразу после окончания учебы. Знание, что такое ДНК, какое влияние оно оказывает на нашу жизнь, порой может оказаться очень нужным.

Молекула ДНК

Биохимики выделяют три типа макромолекул: ДНК, РНК и белки. Дезоксирибонуклеиновая кислота – это биополимер, который несет ответственность за передачу данных о наследственных чертах, особенностях и развитии вида из поколения в поколение. Его мономером является нуклеотид. Что такое молекулы ДНК? Это главный компонент хромосом и содержит генетический код.

Структура ДНК

Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.

Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.

Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).

Состав ДНК

Без знания, из чего состоит ДНК, не было бы ни одного достижения медицины. Каждый нуклеотид – это три части: остаток сахара пентозы, азотистое основание, остаток фосфорной кислоты. Исходя из особенностей соединения, кислоты могут называться дезоксирибонуклеиновой или рибонуклеиновой. В состав ДНК входит огромное число мононуклеотидов из двух оснований: цитозин и тимин. Кроме этого, она содержит производные пиримидинов, аденин и гуанин.

Есть в биологии определение DNA – мусорная ДНК. Функции ее еще неизвестны. Альтернативная версия названия – «некодирующая», что не верно, т.к. она содержит кодирующие белки, транспозоны, но их назначение тоже тайна. Одна из рабочих гипотез говорит о том, что некоторое количество этой макромолекулы способствует структурной стабилизации генома в отношении мутаций.

Где находится­

Расположение внутри клетки зависит от особенностей вида. У одноклеточных ДНК находится в мембране. У остальных живых существ она располагается в ядре, пластидах и митохондриях. Если говорить о человеческой ДНК, то ее называют хромосомой. Правда, это не совсем так, ведь хромосомы – это комплекс хроматина и дезоксирибонуклеиновой кислоты.

Роль в клетке

Основная роль ДНК в клетках – передача наследственных генов и выживание будущего поколения. От нее зависят не только внешние данные будущей особи, но и ее характер и здоровье. Дезоксирибонуклеиновая кислота находится в суперскрученном состоянии, но для качественного процесса жизнедеятельности она должна быть раскрученной. С этим ей помогают ферменты - топоизомеразы и хеликазы.

Топоизомеразы относятся к нуклеазам, они способны изменять степень скрученности. Еще одна их функция – участие в транскрипции и репликации (делении клеток). Хеликазы разрывают водородные связи между основаниями. Существуют ферменты лигазы, которые нарушенные связи «сшивают», и полимеразы, которые участвуют в синтезе новых цепей полинуклеотидов.

Как расшифровывается ДНК

Эта аббревиатура для биологии является привычной. Полное название ДНК- дезоксирибонуклеиновая кислота. Произнести такое не каждому под силу с первого раза, поэтому часто в речи расшифровка ДНК опускается. Встречается еще понятие РНК – рибонуклеиновая кислота, которая состоит из последовательностей аминокислот в белках. Они напрямую связаны, а РНК является второй по важности макромолекулой.

ДНК человека

Человеческие хромосомы внутри ядра разделены, что делает ДНК человека самым стабильным, полным носителем информации. Во время генетической рекомбинации спирали разделяются, происходит обмен участками, а затем связь восстанавливается. За счет повреждения ДНК образовываются новые комбинации и рисунки. Весь механизм способствует естественному отбору. До сих пор неизвестно, как долго она отвечает за передачу генома, и какова ее эволюция метаболизма.

Кто открыл­

Первое открытие структуры ДНК приписывают английским биологам Джеймсу Уотсону и Френсису Крику, которые в 1953 году раскрыли особенности строения молекулы. Нашел же ее в 1869 году швейцарский врач Фридрих Мишер. Он изучал химический состав животных клеток с помощью лейкоцитов, которые массово скапливаются в гнойных поражениях.

Мишер занимался изучением способов отмывания лейкоцитов, выделял белки, когда обнаружил, что кроме них есть что-то еще. На дне посуды во время обработки образовался осадок из хлопьев. Изучив эти отложения под микроскопом, молодой врач обнаружил ядра, которые оставались после обработки соляной кислотой. Там содержалось соединение, которое Фридрих назвал нуклеином (от лат. nucleus - ядро).

План рождения человека готов тогда, когда половые клетки матери и отца сливаются в одно целое. Такое образование называется зиготой или оплодотворённой яйцеклеткой. Сам же план развития организма заключён в молекуле ДНК , находящейся в ядре этой единственной клетки. Именно в ней закодирован цвет волос, рост, форма носа и всё остальное, что делает личность индивидуальной.

Конечно, судьба человека зависит не только от молекулы, но и от многих других факторов. Но гены, заложенные при рождении, тоже во многом влияют на судьбоносный путь. А представляют они собой последовательность нуклеотидов.

При каждой делении клетки ДНК удваивается. Поэтому каждая клетка несёт в себе информацию о строении всего организма. Это как если бы при строительстве кирпичного здания на каждом кирпиче имелся архитектурный план всего сооружения. Посмотрел всего лишь на один кирпич и уже знаешь, частью какой строительной конструкции он является.

Подлинная структура молекулы ДНК была впервые продемонстрирована британским биологом Джоном Гёрдоном в 1962 году. Он брал ядро клетки из кишечника лягушки и с помощью микрохирургической техники пересаживал его в лягушачью икринку. При этом в этой икринке собственное ядро было предварительно убито ультрафиолетовым облучением.

Из гибридной икринки вырастала нормальная лягушка. При этом она была абсолютно идентична той, чьё клеточное ядро было взято. Так было положено начало эре клонирования. А первым успешным результатом клонирования среди млекопитающих стала овечка Долли. Она прожила 6 лет, а затем скончалась.

Впрочем, сама природа тоже создаёт двойников. Случается это тогда, когда после первого деления зиготы две новые клетки не остаются вместе, а расходятся в стороны, и из каждой получается свой организм. Так рождаются однояйцевые близнецы. Их молекулы ДНК абсолютно одинаковые, поэтому близнецы так похожи.

Своим внешним видом ДНК напоминает верёвочную лестницу, завитую в правую спираль. А состоит она из полимерных цепочек, каждая из которых формируется из звеньев 4-х типов: адениновое (А), гуаниновое (Г), тиминовое (Т) и цитозиновое (Ц).

Именно в их последовательности и заключена генетическая программа любого живого организма. На рисунке ниже, для примера, приведён нуклеотид Т. У него верхнее кольцо называется азотистым основанием, пятичленное кольцо внизу представляет собой сахар, а слева находится фосфатная группа.

На рисунке изображён тиминовый нуклеотид, входящий в состав ДНК. Остальные 3 нуклеотида имеют сходное строение, а различаются по азотистому основанию. Правое верхнее кольцо - азотистое основание. Нижнее пятичленное кольцо - сахар. Левая группа РО - фосфат

Размеры молекулы ДНК

Диаметр двойной спирали составляет 2 нм (нм - нанометр, равен 10 -9 метра). Расстояние между соседними парами оснований вдоль спирали составляет 0,34 нм. Полный оборот двойная спираль делает через 10 пар. А вот длина зависит от того организма, которому принадлежит молекула. У простейших вирусов имеется всего лишь несколько тысяч звеньев. У бактерий их несколько миллионов. А у высших организмов их миллиарды.

Если вытянуть в одну линию все ДНК, заключённые в одной клетке человека, то получится нить длиной примерно 2 м. Отсюда видно, что длина нити в миллиарды раз больше её толщины. Чтобы лучше представить себе размеры молекулы ДНК, можно вообразить, что её толщина равна 4 см. Такой нитью, взятой из одной человеческой клетки, можно опоясать земной шар по экватору. В таком масштабе человек будет соответствовать размерам Земли, а ядро клетки вырастит до размеров стадиона.

Верна ли модель Уотсона и Крика?

Рассматривая структуру молекулы ДНК, возникает вопрос, как она, имея такую огромную длину, располагается в ядре. Она должна лежать так, чтобы быть доступной по всей своей длине для РНК-полимеразы, которая считывает нужные гены.

А как осуществляется репликация? Ведь после удвоения две комплементарные цепи должны разойтись. Это довольно сложно, так как цепи первоначально закручены в спираль.

Такие вопросы изначально породили сомнения в верности модели Уотсона и Крика . А данная модель была слишком конкретна и просто дразнила специалистов своей незыблемостью. Поэтому все бросились искать изъяны и противоречия.

Одни специалисты предполагали, что если злополучная молекула состоит из 2-х полимерных цепочек, связанных слабыми нековалентными связями, то они должны расходиться при нагревании раствора, что можно легко проверить экспериментально.

Вторые специалисты заинтересовались азотистыми основаниями, которые образуют друг с другом водородные связи. Это можно проверить, измеряя спектры молекулы в инфракрасной области.

Третьи специалисты думали, что если внутри двойной спирали и впрямь запрятаны азотистые основания, то можно выяснить, действуют ли на молекулу те вещества, которые способны реагировать только с этими запрятанными группами.

Было поставлено множество опытов и к концу 50-х годов XX столетия стало ясно, что предложенная Уотсоном и Криком модель выдерживает все испытания. Попытки её опровержения потерпели неудачу .