Классификации картографических проекций. Основные типы проекций Типы проекций географических карт

Для выбора наивыгоднейшего пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное обобщенное изображение земной поверхности на плоскости, выполненное по определенному масштабу и способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений. Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов - разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности - картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей или части поверхности шара или эллипсоида вращения с малым сжатием называются картографической проекцией , а принятая при данной картографической проекции система изображения сети меридианов и параллелей - картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т. е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Если остров круглой формы в природе, то и на кар- те в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т. е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач. Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.

Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S (рис, 33). В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели - дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными. Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли (рис.34), и последующей развертки по образующей на плоскость.


В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа",bb",сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис. 34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса). Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки. На этих сетках меридианы и параллели изображаются кривыми линиями.




Рис. 34


Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q (рис. 35) - касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из. центральной точки проекции P N под угла- ми, равными соответствующим углам в натуре, а параллели - концентрическими окружностями с центром в полюсе. Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Азимутальная проекция зависит от того, какими радиусами проводятся параллели. Подчиняя радиусы той или иной зависимости от широты, получают различные азимутальные проекции, удовлетворяющие условиям либо равноугольности, либо равновеликости.


Рис. 35


Перспективные проекции. Если картографическую сетку получают проектированием меридианов и параллелей на плоскость по законам линейной перспективы из постоянной точки зрения Т.З. (см. рис. 35), то такие проекции называют перспективными. Плоскость можно располагать на любом расстоянии от Земли или так, чтобы она касалась ее. Точка зрения должна находиться на так называемом основном диаметре земного шара или на его продолжении, причем картинная плоскость должна быть перпендикулярна основному диаметру.

Когда основной диаметр проходит через полюс Земли, проекция называется прямой или полярной (см. рис. 35); при совпадении основного диаметра с плоскостью экватора проекция называется поперечной или экваториальной, а при других положениях основного диаметра проекции называются косыми или горизонтальными.

Кроме того, перспективные проекции зависят от расположения точки зрения от центра Земли на основном диаметре. Когда точка зрения совпадает с центром Земли, проекции называются центральными или гномоническими; когда точка зрения находится на поверхности Землистереографическими; при удалении точки зрения на какое-либо известное расстояние от Земли проекции называются внешними, и при удалении точки зрения в бесконечность -ортографическими.

На полярных перспективных проекциях меридианы и параллели изображаются аналогично полярной азимутальной проекции, но расстояния, между параллелями получаются разными и обусловлены положением точки зрения на линии основного диаметра.

На поперечных и косых перспективных проекциях меридианы и параллели изображаются в виде эллипсов, гипербол, окружностей, парабол или прямых линий.

Из особенностей, свойственных перспективным проекциям, следует отметить, что на стереографической проекции любой круг, проведенный на земной поверхности, изображается в виде окружности; на центральной проекции всякий большой круг, проведенный на земной поверхности, изображается в виде прямой линии, в связи с чем в некоторых частных случаях эту проекцию представляется целесообразным применять в навигации.

Условные проекции. К этой категории относятся все проекции, которые по способу построения нельзя отнести ни к одному из перечисленных выше видов проекций. Они обычно удовлетворяют каким-нибудь заранее поставленным условиям, в зависимости от тех целей, для которых требуется карта. Число условных проекций не ограничено.

Небольшие участки земной поверхности до 85 км можно изобразить на плоскости с сохранением на них подобия нанесенных фигур и площадей. Такие плоские изображения небольших участков земной поверхности, на которых искажениями практически можно пренебрегать, называются планами.

Планы обычно составляют без всяких проекций путем непосредственной съемки и на них наносят все подробности снимаемого участка.

Из рассмотренных выше проекций в судовождении в основном применяются: равноугольная, цилиндрическая, азимутальная перспективная, гномоническая и азимутальная перспективная стереографическая.

Масштабы

Масштабом карты называется отношение бесконечно малого элемента линии в данной точке и по данному направлению на карте к соответствующему бесконечно малому элементу линии на местности.

Этот масштаб называется частным масштабом, и каждая точка карты имеет свой, присущий только ей, частный масштаб. На картах, кроме частного, различают еще главный масштаб, являющийся исходной величиной для расчетов размеров карты.

Главным называется масштаб, величина которого сохраняется лишь по определенным линиям и направлениям, в зависимости от характера построения карты. На всех остальных частях одной и той же карты величина масштаба больше или меньше главного, т. е. этим частям карты будут соответствовать свои частные масштабы.

Отношение частного масштаба карты в данной точке по данному направлению к главному называется увеличением масштаба , а разность между увеличением масштаба и единицей - относительным искажением длины. На равноугольной цилиндрической проекции масштаб изменяется при переходе с одной параллели на другую. Параллель, по которой соблюден главный масштаб, называется главной параллелью. По мере удаления от главной параллели в сторону полюса величины частных масштабов на одной и той же карте увеличиваются и, наоборот, по мере удаления от главной параллели в сторону экватора величины частных масштабов уменьшаются.

Если масштаб выражается в виде простой дроби (или отношения), делимое которой - единица, а делитель - число, указывающее, скольким единицам длины на горизонтальной проекции данного участка земной поверхности соответствует одна единица длины на карте, то такой масштаб называется численным или числовым. Например, числовой масштаб 1/100000 (1:100000) означает, что 1 см на карте соответствует 100 000 см на местности.

Для определения длины измеряемых линий пользуются линейным масштабом, показывающим, сколько единиц длины высшего наименования на местности содержится в одной единице длины низшего наименования на карте (плане).

Например, масштаб карты «5 миль в I см» или 10 км в 1 см» и т. п. Это значит, что расстояние в 5 миль (или 10 км) на местности соответствует 1 см на карте (плане).

Линейный масштаб на плане или карте помещают под рамкой в виде прямой, разделенной на несколько делений; начальную точку линейного масштаба обозначают цифрой 0, а затем против каждого или некоторых последующих его делений ставят цифры, показывающие соответствующие этим делениям расстояния на местности.

Переход от числового масштаба к линейному осуществляется простым пересчетом мер длины.

Например, чтобы перейти от числового масштаба 1/100000 к линейному, нужно 100 000 см перевести в километры или мили. 100 000 см = 1 км, или, приближенно, 0,54 мили, следовательно, данная карта составлена в масштабе 1 км в 1 см, или 0,54 мили в 1 см.

Если известен линейный масштаб, например 2 мили в 1 см, то для перехода к числовому необходимо 2 мили перевести в сантиметры и сделать запись в виде дроби с числителем единица: 2 1852 100 - = 370 400 см, следовательно, числовой масштаб данной карты 1/370400


По характеру искажений проекции делятся на равноугольные, равновеликие и произвольные.

Равноугольные (или конформные) проекции сохраняют величину углов и формы бесконечно малых фигур . Масштаб длин в каждой точке постоянен по всем направлениям (что обеспечивается закономерным увеличением расстояний между соседними параллелями по меридиану) и зависит только от положения точки. Эллипсы искажений выражаются окружностями различных радиусов.

Для каждой точки в равноугольных проекциях справедливы зависимости:

/Li = a = b = m = n; а> = 0°; 0 = 90°; k = 1 и а0=0° (или ±90°).

Такие проекции особенно удобны для определения направлений и прокладки маршрутов по заданному азимуту (например, при решении навигационных задач).

Равновеликие (или эквивалентные) проекции не искажают площади . В этих проекциях площади эллипсов искажений равны . Увеличение масштаба длин по одной оси эллипса искажений компенсируется уменьшением масштаба длин по другой оси, что вызывает закономерное уменьшение расстояний между соседними параллелями по меридиану и, как следствие, — сильное искажение форм.

Такие проекции удобны для измерения площадей объектов (что, например, существенно для некоторых экономических или морфометрических карт).

В теории математической картографии доказывается, что нет, и не может быть проекции, которая была бы одновременно и равноугольной, и равновеликой . Вообще, чем больше искажения углов, тем меньше искажения площадей и наоборот

Произвольные проекции искажают и углы, и площади . При их построении стремятся найти наиболее выгодное для каждого конкретного случая распределение искажений, достигая как бы некоторого компромисса. Эта группа проекций используется в случаях, когда чрезмерные искажения углов и площадей одинаково нежелательны . По своим свойствам произвольные проекции лежат между равноугольными и равновеликими . Среди них можно выделить равнопромежуточные (или эквидистантные) проекции, во всех точках которых масштаб по одному из главных направлений постоянен и равен главному.

Классификация картографических проекций по виду вспомогательной геометрической поверхности .

По виду вспомогательной геометрической поверхности различают проекции: цилиндрические, азимутальные и конические.

Цилиндрическими называют проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковую поверхность касательного (или секущего) цилиндра, а затем цилиндр разрезается по образующей и развертывается в плоскость (рис. 6).

Рис.6. Нормальная цилиндрическая проекция

Искажения отсутствуют на линии касания и минимальны вблизи нее. Если цилиндр секущий, то имеется две линии касания, а значит 2 ЛНИ. Между ЛНИ искажения минимальны.

В зависимости от ориентировки цилиндра относительно оси земного эллипсоида различают проекции:

– нормальные, когда ось цилиндра совпадает с малой осью земного эллипсоида; меридианы в этом случае представляют собой равноотстоящие параллельные прямые, а параллели – прямые, им перпендикулярные линии;

– поперечные, когда ось цилиндра лежит в плоскости экватора; вид сетки: средний меридиан и экватор – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии (рис. в).

– косые, когда ось цилиндра составляет с осью эллипсоида острый угол; в косых цилиндрических проекциях меридианы и параллели – кривые линии.

Азимутальными называют проекции, в которых сеть меридианов и параллелей переносится с поверхности эллипсоида на касательную (или секущую) плоскость (рис.7).

Рис. 7. Нормальная азимутальная проекция

Изображение около точки касания (или линии сечения) плоскости земного эллипсоида почти совсем не искажается. Точка касания является точкой нулевых искажений.

В зависимости от положения точки касания плоскости на поверхности земного эллипсоида среди азимутальных проекций различают:

– нормальные, или полярные, когда плоскость касается Земли в одном из полюсов; вид сетки: меридианы – прямые линии, радиально расходящиеся из полюса, параллели – концентрические окружности с центрами в полюсе (рис. 7);

– поперечные, или экваториальные, когда плоскость касается эллипсоида в одной из точек экватора; вид сетки: средний меридиан и экватор – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии (в некоторых случаях параллели изображаются прямыми линиями;

косые, или горизонтные, когда плоскость касается эллипсоида в какой-либо точке, лежащей между полюсом и экватором. В косых проекциях только средний меридиан, на котором расположена точка касания, представляет собой прямую, остальные меридианы и параллели – кривые линии.

Коническими называются проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковую поверхность касательного (или секущего) конуса (рис. 8).

Рис. 8. Нормальная коническая проекция

Искажения мало ощутимы вдоль линии касания или двух линий сечения конуса земного эллипсоида, которые являются линией (линиями) нулевых искажений ЛНИ. Подобно цилиндрическим конические проекции делятся на:

– нормальные, когда ось конуса совпадает с малой осью земного эллипсоида; меридианы в этих проекциях представлены прямыми линиями, расходящимися из вершины конуса, а параллели – дугами концентрических окружностей.

– поперечные, когда ось конуса лежит в плоскости экватора; вид сетки: средний меридиан и параллель касания – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии;

– косые, когда ось конуса составляет с осью эллипсоида острый угол; в косых конических проекциях меридианы и параллели – кривые линии.

В нормальных цилиндрических, азимутальных и конических проекциях картографическая сетка ортогональна – меридианы и параллели пересекаются под прямыми углами, что является одним из важных диагностических признаков этих проекций.

Если при получении цилиндрических, азимутальных и конических проекций использовать геометрический метод (линейное проектирование вспомогательной поверхности на плоскость), то такие проекции называют перспективно-цилиндрическими, перспективно-азимутальными (обыкновенными перспективными) и перспективно-коническими соответственно.

Поликоническими называются проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковые поверхности нескольких конусов, каждый из которых разрезается по образующей и развертывается в плоскость. В поликонических проекциях параллели изображаются дугами эксцентрических окружностей, центральный меридиан представляет собой прямую, все остальные меридианы – кривые линии, симметричные относительно центральному.

Условными называются проекции, при построении которых не прибегают к использованию вспомогательных геометрических поверхностей. Сеть меридианов и параллелей строят по какому-нибудь заранее заданному условию. Среди условных проекций можно выделитьпсевдоцилиндрические , псевдоазимутальные и псевдоконические проекции, сохраняющие от исходных цилиндрических, азимутальных и конических проекций вид параллелей. В этих проекцияхсредний меридиан – прямая линия, остальные меридианы – кривые линии .

К условным проекциям относятся также многогранные проекции , которые получают путем проектирования на поверхность многогранника, касающегося или секущего земной эллипсоид. Каждая грань представляет собой равнобочную трапецию (реже – шестиугольники, квадраты, ромбы). Разновидностью многогранных проекций являются многополосные проекции , причем полосы могут нарезаться и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Основное неудобство многогранных проекций состоит в невозможности совмещения блока листов карт по общим рамкам без разрывов.

Практически ценным является подразделение по территориальному охвату. По территориальному охвату выделяются картографические проекции для карт мира, полушарий, материков и океанов, карт отдельных государств и их частей. По этому принципу построены таблицы-определители картографических проекций. Кроме того, в последнее время предпринимаются попытки к разработке генетических классификаций картографических проекций, построенных на виде описывающих их дифференциальных уравнений. Эти классификации охватывают все возможное множество проекций, но являются крайне ненаглядными, т.к. не связаны с видом сетки меридианов и параллелей.

Тема 3. Искажения на картах. Виды искажений

Цели и задачи изучения темы:

Дать представление об искажениях на картах и видах искажений:

— сформировать представление об искажениях в длинах;

сформировать представление об искажениях в площадях;

сформировать представление об искажениях в углах;

сформировать представление об искажениях в формах;

Результат освоения темы:

Поверхность эллипсоида (или шара) нельзя развернуть в плоскость с сохранением подобия всех очертаний.

Если поверхность глобуса (модели земного эллипсоида), разрезанную на полоски по меридианам (или параллелям), развернуть в плоскость, в картографическом изображении произойдут разрывы или перекрытия, и с удалением от экватора (или от среднего меридиана) они будут возрастать.

Вследствие этого необходимо производить растяжение или сжатие полосок, чтобы заполнить разрывы по меридианам или параллелям.

В результате растяжений или сжатий в картографическом изображении возникают искажения в длинах m (мю), площадяхp , углах w и формах k .

В связи с этим масштаб карты, характеризующий степень уменьшения объектов при переходе от натуры к изображению, не остается постоянным: он меняется от точки к точке и даже в одной точке по разным направлениям. Поэтому следует различать главный масштаб ds , равный заданному масштабу, в котором происходит уменьшение земного эллипсоида.

Главный масштаб показывает общую степень уменьшения, принятую для данной карты.

На картах всегда подписывается главный масштаб.

Во всех остальных местах карты масштабы будут отличаться от главного, они будут крупнее или мельче главного, эти масштабы называют частными и обозначают буквой ds1.

Под масштабом в картографии понимают отношение бесконечно малого отрезка, взятого на карте, к соответствующему ему отрезку на земном эллипсоиде (земном шаре). Все зависит от того, что берется за основу при построении проекции – земной шар или эллипсоид.

Чем меньше будет изменение масштаба в пределах данного участка, тем совершеннее будет картографическая проекция.

Для выполнения картографических работ необходимо знать распределение на карте величин частных масштабов, чтобы можно было вносить поправки в результаты измерений.

Частные масштабы вычисляют по специальным формулам.

Анализ вычисления частных масштабов показывает, что среди них имеется одно направление с наибольшим масштабом , а другое – с наименьшим.

Наибольший масштаб, выраженный в долях главного масштаба обозначают буквой «а», а наименьший – буквой «в» .

Направления наибольшего и наименьшего масштабов называют главными направлениями .

Главные направления только тогда совпадают с меридианами и параллелями, когда меридианы и параллели пересекаются под прямыми углами.

В таких случаях масштаб по меридианам обозначают буквой « , а по параллелям – буквой « .

Отношение частного масштаба к главному характеризует искажение длин m (мю).

Иными словами, величина m (мю)есть отношение длины бесконечно малого отрезка на карте к длине соответствующего ему бесконечно малого отрезка на поверхности эллипсоида или шара.

m (мю) = ds1

Искажение площадей.

Искажение площади p определяется как отношение бесконечно малых площадей на карте к бесконечно малым площадям на эллипсоиде или шаре:

p= dp1

Проекции, в которых отсутствуют искажения площадей, называются равновеликими.

При создании физико-географических и социально-экономических карт, бывает необходимо сохранить верное соотношение площадей. В таких случаях выгодно применять равновеликие и произвольные (равнопромежуточные) проекции.

В равнопромежуточных проекциях искажения площади в 2-3 раза меньше, чем в равноугольных.

Для политических карт мира желательно сохранить правильность соотношения площадей отдельных государств, не исказив внешний контур государства.

В этом случае выгодно применять равнопромежуточную проекцию.

Проекция Меркатора для таких карт не подходит, так как в ней сильно искажаются площади

Искажение углов . Возьмем на поверхности глобуса угол u (рис. 5), который на карте изобразиться углом u .

Каждая сторона угла на глобусе образует с меридианом угол α, который называется азимутом. На карте этот азимут изобразится углом α′.

В картографии приняты два вида угловых искажений: искажения направления и искажения углов.

А А

α α

0 u 0 u

В В

Искажения углов

Разность между азимутом стороны угла на карте α и азимутом стороны угла на глобусе называется искажением направления , т.е.

ω = α′ — α

Разность между величиной угла u на карте и величиной u на глобусе называется искажением угла, т.е.

2ω = u′ — u

Искажение угла выражается величиной потому, что угол состоит из двух направлений, каждое из которых имеет искажение ω .

Проекции, в которых отсутствуют искажения углов, называются равноугольными.

Искажение форм напрямую связано с искажениями углов (конкретным значениям w соответствуют определенные значения k ) и характеризует деформа­цию фигур на карте по отношению к соответствующим фигурам на местности.

Искажения форм будут тем больше, чем больше будут отличаться масштабы по главным направлениям.

В качестве меры искажения форм принимают коэффициент k .

k = а/в

где а и в – наибольший и наименьший масштабы в данной точке.

Искажения на географических картах тем больше, чем больше изображаемая территория, а в пределах одной карты искажения возрастают с удалением от центра к краям карты, причем скорость нарастания меняется по разным направлениям.

Для того, чтобы наглядно представить себе характер искажений в разных частях карты, часто пользуются, так называемым эллипсом искажений.

Если взять на глобусе окружность бесконечно-малого размера, то при переходе на карту из-за растяжений или сжатий эта окружность исказится подобно очертаниям географических объектов и примет форму эллипса.

Этот эллипс называют эллипсом искажений или индикатриссой Тиссо.

Размеры и степень вытянутости этого эллипса по сравнению с окружностью отражают все виды искажений, свойственные карте в этом месте. Вид и размеры эллипса неодинаковы в разных проекциях и даже в разных точках одной и той же проекции.

Наибольший масштаб в эллипсе искажений совпадает с направлением большой оси эллипса, а наименьший — с направлением малой оси.

Эти направления называются главными направлениями .

Эллипс искажений на картах не изображается.

Им пользуются в математической картографии для выяснения величины и характера искажений в какой-нибудь точке проекции.

Направления осей эллипса могут совпадать с меридианами и параллелями, а в некоторых случаях оси эллипса могут занимать относительно меридианов и параллелей произвольное положение.

Определение искажений для ряда точек карты и последующее проведение по ним изокол — линий, соединяющих точки с одинаковыми значениями искажений, дает наглядную карти­ну распределения искажений и позволяет учитывать искажения при пользовании картой.

Для определения искажений в пределах карты можно пользоваться специальными таблицами или схемами изокол. Изоколы могут быть для углов, площадей, длин или форм.

Каким бы способом не развертывать земную поверхность на плоскость, обязательно возникнут разрывы и перекрытия, что в свою очередь приводит к растяжениям и сжатиям.

Но на карте вместе с тем будут места, в которых не будет сжатий и растяжений.

Линии или точки на географической карте, в которых нет искажений и сохраняется главный масштаб карты, называют линиями или точками нулевых искажений (ЛНИ и ТНИ).

По мере удаления от них искажения возрастают.

Вопросы для повторения и закрепления материала

Что служит причиной картографических искажений?

Виды картографических проекций и их характеристики

Какие виды искажений возникают при переходе от поверхности
эллипсоида к плоскости?

3. Объясните, что такое точка и линия нулевых искажений?

4. На каких картах масштаб остается постоянным?

5. Как определить наличие и величину искажений в определенных местах карты?

Что такое индикатриса Тиссо?

7. Каково назначение эллипса искажений?

8. Что такое изоколы и каково их назначение?

Картографическая проекция - это способ перехода от реальной, геометрически сложной земной поверхности к плоскости карты.

Сферическую поверхность невозможно развернуть на плоскости без деформаций - сжатия или растяжения.

Это значит, что всякая карта имеет те или иные искажения. Различают искажения длин площадей, углов и форм. На крупномасштабных картах (см.

Масштаб) искажения могут быть практически неощутимы, но на мелкомасштабных они бывают очень велики. Картографические проекции обладают разными свойствами в зависимости от характера и размера искажений.

Тема 5. КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ И ИСКАЖЕНИЯ

Среди них различают:

Равноугольные проекции . Они сохраняют без искажения углы и формы малых объектов, зато в них резко деформируются длины и площади объектов. По картам, составленным в такой проекции, удобно прокладывать маршруты судов, но невозможно измерять площади;

Равновеликие проекции. Они не искажают площадей, но углы и формы в них сильно искажены.

Карты в равновеликих проекциях удобны для определения размеров государства, земельных угодий;
Равнопромежуточные. Они имеют постоянный масштаб длин по одному направлению. Искажения углов и площадей в них уравновешены;

Произвольные проекции . Они имеют искажения и углов и площадей в любых соотношениях.
Проекции различаются не только по характеру и размеру искажений, но и по виду поверхности, которую используют при переходе от геоида к плоскости карты.

Среди них различают:

Цилиндрические , когда проектирование с геоида идет на поверхность цилиндра.

Цилиндрические проекции чаще всего применяют в картографии. Они обладают наименьшими искажениями в области экватора и средних широт. Эту проекцию чаще всего применяют для создания карт мира;

Конические . Эти проекции чаще всего выбирали для создания карт бывшего СССР. Наименьшее количество искажений при конических проекциях приходилось на параллели 47° северной широты и 62° северной долготы.

Это очень удобно, поскольку между указанными параллелями размещались основные хозяйственные зоны этого государства и здесь была сосредоточена максимальная нагрузка карт. Зато в конических проекциях сильно искажаются районы, лежащие в высоких широтах и акватории Северного Ледовитого океана;

Азимутальная проекция . Это такой вид картографической проекции, когда проектирование ведется на плоскость.

Такой вид проекции применяют при создании карт Антарктиды или Арктики или какого-либо другого района Земли.

В результате картографических проекций каждой точке на земном шаре, обладающей определенными географическими координатами, соответствует одна и только одна точка на карте.

Кроме цилиндрической, конической и азимутальной картографических проекций, существует большой класс условных проекций, при построении которых пользуются не геометрическими аналогами, а лишь математическими уравнениями нужного вида.

Картографическая проекция википедия
Поиск по сайту:

Для выбора наивыгоднейшего пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное обобщенное изображение земной поверхности на плоскости, выполненное по определенному масштабу и способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений.

Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов - разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности - картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей или части поверхности шара или эллипсоида вращения с малым сжатием называются картографической проекцией , а принятая при данной картографической проекции система изображения сети меридианов и параллелей - картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т.

е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле.

Если остров круглой формы в природе, то и на кар- те в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т.

е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач.

Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.

Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S (рис, 33).

В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели - дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными.

Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли (рис.34), и последующей развертки по образующей на плоскость.

В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа’,bb’, сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис.

34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса).

Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки.

Лекция: Виды картографических проекций

На этих сетках меридианы и параллели изображаются кривыми линиями.

Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q (рис. 35) - касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из. центральной точки проекции PN под угла- ми, равными соответствующим углам в натуре, а параллели - концентрическими окружностями с центром в полюсе.

Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Азимутальная проекция зависит от того, какими радиусами проводятся параллели. Подчиняя радиусы той или иной зависимости от широты, получают различные азимутальные проекции, удовлетворяющие условиям либо равноугольности, либо равновеликости.

Перспективные проекции. Если картографическую сетку получают проектированием меридианов и параллелей на плоскость по законам линейной перспективы из постоянной точки зрения Т.З.

(см. рис. 35), то такие проекции называют перспективными. Плоскость можно располагать на любом расстоянии от Земли или так, чтобы она касалась ее. Точка зрения должна находиться на так называемом основном диаметре земного шара или на его продолжении, причем картинная плоскость должна быть перпендикулярна основному диаметру.

Когда основной диаметр проходит через полюс Земли, проекция называется прямой или полярной (см. рис. 35); при совпадении основного диаметра с плоскостью экватора проекция называется поперечной или экваториальной, а при других положениях основного диаметра проекции называются косыми или горизонтальными.

Кроме того, перспективные проекции зависят от расположения точки зрения от центра Земли на основном диаметре.

Когда точка зрения совпадает с центром Земли, проекции называются центральными или гномоническими; когда точка зрения находится на поверхности Землистереографическими; при удалении точки зрения на какое-либо известное расстояние от Земли проекции называются внешними, и при удалении точки зрения в бесконечность - ортографическими.

На полярных перспективных проекциях меридианы и параллели изображаются аналогично полярной азимутальной проекции, но расстояния, между параллелями получаются разными и обусловлены положением точки зрения на линии основного диаметра.

На поперечных и косых перспективных проекциях меридианы и параллели изображаются в виде эллипсов, гипербол, окружностей, парабол или прямых линий.

Из особенностей, свойственных перспективным проекциям, следует отметить, что на стереографической проекции любой круг, проведенный на земной поверхности, изображается в виде окружности; на центральной проекции всякий большой круг, проведенный на земной поверхности, изображается в виде прямой линии, в связи с чем в некоторых частных случаях эту проекцию представляется целесообразным применять в навигации.

Условные проекции. К этой категории относятся все проекции, которые по способу построения нельзя отнести ни к одному из перечисленных выше видов проекций.

Они обычно удовлетворяют каким-нибудь заранее поставленным условиям, в зависимости от тех целей, для которых требуется карта. Число условных проекций не ограничено.

Небольшие участки земной поверхности до 85 км можно изобразить на плоскости с сохранением на них подобия нанесенных фигур и площадей.

Такие плоские изображения небольших участков земной поверхности, на которых искажениями практически можно пренебрегать, называются планами.

Планы обычно составляют без всяких проекций путем непосредственной съемки и на них наносят все подробности снимаемого участка.

Наряду с обычной радиолюбители используют карты с азимутальной проекцией, при которой на плоскость проектируется поверхность материка. Точкой нулевого искажения является точка касания плоскости к земной поверхности, максимальное искажение имеют периферийные части карты.

Параллели в прямых азимутальный проекциях (точка соприкосновения - полюса) изображаются концентрическими кругами, а меридианы - прямыми (лучами). В поперечно-азимутальной проекции (точка соприкосновения - на экваторе) составлена карта полушарий, в которой меридианам и параллелям соответствуют кривые, за исключением экватора и средних меридианов полушарий.

Для изображения отдельных материков точки соприкосновения выбирают в их центре (карты Африки, Австралии и Америки).

§ 17. КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ

В современных условиях картографические проекции строятся также с помощью математических расчетов без вспомогательных поверхностей; их называют условными проекциями

Создать хорошую цветную азимутальную карту от NS6T для вашего QTH можно зайдя на сайт по ссылке ниже.

Просто введите свой локатор и в формате PDF будете её иметь

Зайти на сайт

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Информация
Посетители, находящиеся в группе Гости , не могут оставлять комментарии в данной новости.

Оказывается привычная карта мира это всего лишь одна из немногих проекций земного шара на плоскость карты.

Проекция Меркатора - одна из основных картографических проекций.

Разработана Герардом Меркатором для применения в его «Атлас» 450 лет назад.

Проекция Меркатора висит на стене в классе географии, ее используют Google Maps и другие картографические сервисы. Люди смотрят на карту в проекции Меркатора и теряют связь с реальностью. Они считают, что крохотная Гренландия - это настоящий ледяной материк, размером с Австралию, а Северная Америка больше Африки и т.

Классификации картографических проекций

Спросите всех своих знакомых, какой материк по размеру на втором месте? Почти всегда, ей оказывается Северная Америка.

Такая проекция льстит приполярным государствам, потому что размеры стран в этой проекции потрясающие - Африка оказывается на территориальном отшибе.

В географическом смысле реальный мир выглядит иначе. Не в популярной и в значительной мере иллюзорной проекции Меркатора, а в реальных пропорциях.

Проекция Галла-Петерса

В проекции Галла-Петерса площади всех стран указаны в одном масштабе.

Именно по этой карте следует сравнить площади государств или материков друг с другом. На этой карте Россия не выглядит привычным гигантом, а занимает полосу на вдоль северного полюса.

Теперь все встало на свои места Гренландия в 3 раза меньше Австралии.

Студия Артемия Лебедева сделала в рамках проекта Суша сайт и плакат. На сайте можно сравнить площади разных стран. Советую посмотреть процесс создания инфографики.


Все картографические проекции классифицируются по ряду признаков, в том числе, по характеру искажений, виду меридианов и параллелей нормальной картографической сетки, положению полюса нормальной системы координат.

1. Классификация картографических проекций

по характеру искажений:

а) равноугольные, или конформные оставляют без искажений углы и форму контуров, но имеют значительные искажения площадей. Элементарная окружность в таких проекциях всегда остается окружностью, но размеры ее сильно меняются. Такие проекции особенно удобны для определения направлений и прокладки маршрутов по заданному азимуту , поэтомy их всегда используют на навигационных картах.,

Эти проекции могут быть описаны уравнениями в характеристиках вида:

m=n=a=b=m

q=90 0 w=0 m=n

Рис. Искажения в равноугольной проекции. Карта мира в проекции Меркатора

б) равновеликие, или эквивалентные - сохраняют площади без искажений, однако на них значительно нарушены углы и формы, что особенно заметно на больших территориях. Например, на карте мира приполярные области выглядят сильно сплющенными. Эти проекции могут быть описаны уравнениями вида Р = 1.

Рис. Искажения в равновеликой проекции. Карта мира в проекции Меркатора

в) равнопромежуточные (эквидистантные).

В этих проекциях линейный масштаб по одному из главных направлений постоянен и обычно равен главному масштабу карты, т. е. имеет место

либо а = 1, либо b = 1;

г) произвольные.

Не сохраняют ни углов, ни площадей.

2. Классификация картографических проекций по способу построения

Вспомогательными поверхностями при переходе от эллипсоида или шара к карте могут быть плоскость, цилиндр, конус, серия конусов и некоторые другие геометрические фигуры.

1) Цилиндрические проекции проектирование шара (эллипсоида) ведется на поверхность касательного или секущего цилиндра, а затем его боковая поверхность разворачивается в плоскость.

В этих проекциях параллели нормальных сеток есть прямые параллельные линии, меридианы - также прямые линии, ортогональные к параллелям. Расстояния между меридианами равны и всегда пропорциональны разности долгот

Рис. Вид картографической сетки цилиндрической проекции

Условные проекции — проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др., полученные путем преобразования одной или нескольких сходных проекций.

Псевдоцилиндрические проекции : параллели изображаются прямыми параллельными линиями, меридианы - кривыми линиями, симметричными относительно среднего прямолинейного меридиана, который всегда ортогонален параллелям (применяют для карт мира и Тихого океана).


Рис. Вид картографической сетки псевдоцилиндрической проекции

Полагаем, что географический полюс совпадает с полюсом нормальной системы координат

а) Нормальная (прямая) цилиндрическая - если ось цилиндра совпадает с осью вращения Земли, а его поверхность касается шара по экватору (или сечет его по па-раллелям). Тогда меридианы нормальной сетки предстают в виде равноотстоящих параллельных прямых, а параллели — в виде пря-мых, перпендикулярных к ним. В таких проекциях меньше всего искажений в тропических и приэкваториальных областях.

б) поперечная цилиндрическая проекция - ось цилиндра расположена в плоскости экватора. Цилиндр касается шара по меридиану, искажения вдоль него отсутствуют, и следовательно, в такой проекции наиболее выгодно изображать территории, вытянутые с севера на юг.

в) косая цилиндрическая - ось вспомогательного цилиндра расположена под углом к плоскости экватора. Она удобна для вытянутых территорий, ориентированных на северо-запад или северо-восток.

2) Конические проекции — поверхность шара (эллипсоида) проектируется на поверхность касательного или секущего конуса, после чего она как бы разрезается по образующей и разворачивается в плоскость.

Различают :

· нормальную (прямую) коническую проекцию, когда ось конуса совпа-дает с осью вращения Земли. Меридианы представляют собой прямые, расходящиеся из точки полюса, а параллели — дуги концентрических окружностей. Воображаемый конус каса-ется земного шара или сечет его в районе средних широт, поэто-му в такой проекции удобнее всего картографировать территории России, Канады, США, вытянутые с запада на восток в средних широтах.

· поперечную коническую — ось конуса нежит в плоскости экватора

· косую коническую — ось конуса на-клонена к плоскости экватора.

Псевдоконические проекции — такие, в которых все параллели изображаются дугами концентрических окружностей (как в нормальных конических), средний меридиан — прямая линия, а остальные меридианы — кривые, причем кривизна их возрастает с удалением от среднего меридиана. Применяются для карт России, Евразии, других материков.

Поликонические проекции — проекции, получаемые в результа-те проектирования шара (эллипсоида) на множество конусов. В нормальных поликонических проекциях параллели представлены дугами эксцентрических окружностей, а меридианы — кривые, симметричные относительно прямого среднего меридиана. Чаще всего эти проекции применяются для карт мира.

3) Азимутальные проекции поверхность земного шара (эллип-соида) переносится на касательную или секущую плоскость. Если плоскость перпендикулярна к оси вращения Земли, то получается нормальная (полярная) азимутальная проекция. В этих проекциях параллели изображаются одноцентровыми окружностями, меридианы - пучком прямых линий с точкой схода, совпадающей с центром параллелей. В этой проекции всегда кар-тографируют полярные области нашей и других планет.

а — нормальная или полярная проекция на плоскость; в — сетка в поперечной (экваториальной) проекции;

г — сетка в косой азимутальной проекции.

Рис. Вид картографической сетки азимутальной проекции

Если плоскость проекции перпендикулярна к плоскости эква-тора, то получается поперечная (экваториальная) азимутальная проекция. Она всегда используется для карт полушарий. А если проектирование выполнено на касательную или секущую вспомогательную плоскость, находящуюся под любым углом к плоскости экватора, то получается косая азимутальная проекция.

Среди азимутальных проекций выделяют несколько их разно-видностей, различающихся по положению точки, из которой ве-дется проектирование шара на плоскость.

Псевдоазимутальные проекции — видоизмененные азимуталь-ные проекции. В полярных псевдоазимутальных проекциях парал-лели представляют собой концентрические окружности, а мери-дианы — кривые линии, симметричные относительно одного или двух прямых меридианов. Поперечные и косые псевдоазимуталь-ные проекции имеют общую овальную форму и обычно применя-ются для карт Атлантического океана или Атлантического океана вместе с Северным Ледовитым.

4) Многогранные проекции проекции, получаемые путем про-ектирования шара (эллипсоида) на поверхность касательного или секущего многогранника. Чаще всего каждая грань представляет собой равнобочную трапецию.

3) Классификация картографических проекций по положению полюса нормальной системы координат

В зависимости от положения полюса нормальной системы Р о , все проекции подразделяются на следующие:

а) прямые или нормальные - полюс нормальной системы Р о совпадает с географическим полюсом (φ о = 90°);

б) поперечные или экваториальные - полюс нормальной системы Р о лежит на поверхности в плоскости экватора (φ о = 0°);

в) косые или горизонтальные - полюс нормальной системы Р о располагается между географическим полюсом и экватором (0° < φ о <90°).

В прямых проекциях основная и нормальная сетки совпадают. В косых и поперечных проекциях такого совпадения нет.

Рис. 7. Положение полюса нормальной системы (Р о) в косой картографической проекции

Картографической проекцией называется математически определенный способ отображения поверхности земного эллипсоида на плоскости. Он устанавливает функциональную зависимость между географическими координатами точек поверхности земного эллипсоида и прямоугольными координатами этих точек на плоскости, т.е.

X = ƒ 1 (B , L ) и Y = ƒ 2 (В, L ).

Картографические проекции классифицируются по характеру искажений, по виду вспомогательной поверхности, по виду нормальной сетки (меридианов и параллелей), по ориентировке вспомогательной поверхности относительно полярной оси и др.

По характеру искажений выделяют следующие проекции:

1. равноугольные , которые передают величину углов без искажения и, следовательно, не искажают формы бесконечно малых фигур, а масштаб длин в любой точке остается одинаковым по всем направ­лениям. В таких проекциях эллипсы искажений изображаются окружностями разного радиуса (рис. 2 а ).

2. равновеликие , в которых отсутствуют искажения площадей, т.е. сохраняются соотношения площадей участков на карте и эллипсоиде, однако сильно искажаются формы бесконечно малых фигур и масштабы длин по разным направлениям. Бесконечно малые кружки в разных точках таких проекций изображаются равноплощадными эллипсами, имеющими разную вытянутость (рис. 2 б ).

3. произвольные , в которых имеются в разных соотношениях искажения и углов и площадей. Среди них выделяются равнопромежуточные, в которых масштаб длин по одному из главных направлений (меридианам или параллелям) остается постоянным, т.е. сохраняется длинна одной из осей эллипса (рис. 2 в ).

По виду вспомогательной поверхности для проектирования выделяют следующие проекции:

1. Азимутальные , в которых поверхность земного эллипсоида переносится на касательную или секущую его плоскость.

2. Цилиндрические , в которых вспомогательной поверхностью служит боковая поверхность цилиндра, касательная к эллипсоиду или секущая его.

3. Конические , в которых поверхность эллипсоида переносится на боковую поверхность конуса, касательную к эллипсоиду или секущую его.

По ориентировке вспомогательной поверхности относительно полярной оси проекции подразделяются на:

а) нормальные , в которых ось вспомогательной фигуры совпадает с осью земного эллипсоида; в азимутальных проекциях плоскость перпендикулярна к нормали, совпадающей с полярной осью;

б) поперечные , в которых ось вспомогательной поверхности лежит в плоскости земного экватора; в азимутальных проекциях нормаль вспомогательной плоскости лежит в экваториальной плоскости;

в) косые , в которых ось вспомогательной поверхности фигуры совпадает с нормалью, находящейся между земной осью и плоскостью экватора; в азимутальных проекциях плоскость к этой нормали перпендикулярна.

На рис.3 показаны различные положения плоскости, касательной к поверхности земного эллипсоида.

Классификация проекций по виду нормальной сетки (меридианов и параллелей) является одной из основных. По этому признаку выделяется восемь классов проекций.

а б в

Рис. 3. Виды проекций по ориентировке

вспомогательной поверхности относительно полярной оси.

а -нормальная; б -поперечная; в -косая.

1. Азимутальные. В нормальных азимутальных проекциях меридианы изображаются прямыми, сходящимися в одну точку (полюс) под углами, равными разности их долгот, а параллели - концентрическими окружностями, проведенными с общего центра (полюса). В косых и большинства поперечных азимутальных проекциях меридианы, исключая средний, и параллели представляют кривые линии. Экватор в поперечных проекциях - прямая линия.

2. Конические. В нормальных конических проекциях меридианы изображаются прямыми, сходящимися в одной точке под углами, пропорциональными соответствующим разностям долгот, а параллели - дугами концентрических окружностей с центром в точке схода меридианов. В косых и поперечных - параллели и меридианы, исключая средний, - кривые линии.

3. Цилиндрические. В нормальных цилиндрических проекциях меридианы изображаются равноотстоящими параллельными прямыми, а параллели - перпендикулярными к ним прямыми, в общем случае не равноотстоящими. У косых и поперечных проекциях параллели и меридианы, исключая средний, имеют вид кривых линий.

4. Поликонические. При построении этих проекций сеть меридианов и параллелей переносится на несколько конусов, каждый из которых развертывается в плоскость. Параллели, исключая экватор, изображаются дугами эксцентрических окружностей, центры которых лежат на продолжении среднего меридиана, имеющего вид прямой линии. Остальные меридианы - кривые, симметричные к среднему меридиану.

5. Псевдоазимутальные , параллели которых представляют концентрические окружности, а меридианы - кривые, сходящиеся в точке полюса и симметричные относительно одного или двух прямолинейных меридианов.

6. Псевдоконические , в которых параллели представляют собой дуги концентрических окружностей, а меридианы - кривые линии, симметричные относительно среднего прямолинейного меридиана, который может не изображаться.

7. Псевдоцилиндрические , в которых параллели изображаются параллельными прямыми, а меридианы - кривыми, симметричными относительно среднего прямолинейного меридиана, который может не изображаться.

8. Круговые , меридианы которых, исключая средний, и параллели, исключая экватор, изображаются дугами эксцентрических окружностей. Средний меридиан и экватор - прямые.

    Равноугольная поперечно-цилиндрическая проекция Гаусса – Крюгера. Зоны проекции. Порядок отсчета зон и колонн. Километровая сетка. Определение зоны листа топографической карты по оцифровке километровой сетки

Территория нашей страны имеет очень большие размеры. Это приводит при ее переносе на плоскость к значительным искажениям. По этой причине при построении топографических карт в России на плоскость переносят не всю территорию, а отдельные ее зоны, протяженность которых по долготе составляет 6°. Для переноса зон применяется поперечная цилиндрическая проекция Гаусса – Крюгера (в России используется с 1928 г.). Сущность проекции заключается в том, что вся земная поверхность изображается меридиональными зонами. Такая зона получается в результате деления земного шара меридианами через 6°.

На рис. 2.23 изображен касательный к эллипсоиду цилиндр, ось которого перпендикулярна малой оси эллипсоида.

При построении зоны на отдельный касательный цилиндр эллипсоид и цилиндр имеют общую линию касания, которая проходит по среднему меридиану зоны. При переходе на плоскость он не искажается и сохраняет свою длину. Этот меридиан, проходящий посередине зоны, называется осевым меридианом.

Когда зона спроектирована на поверхность цилиндра, он разрезается по образующим и развертывается в плоскость. При развертывании осевой меридиан изображается без искажения прямой РР′ и его принимают за ось X . Экватор ЕЕ′ также изображается прямой линией, перпендикулярной к осевому меридиану. Он принят за ось Y . Началом координат в каждой зоне служит пересечение осевого меридиана и экватора (рис. 2.24).

В результате, каждая зона представляет собой координатную систему, в которой положение любой точки определяется плоскими прямоугольными координатами X и Y .

Поверхность земного эллипсоида делится на 60 шестиградусных по долготе зон. Счет зон ведется от Гринвичского меридиана. Первая шестиградусная зона будет иметь значение 0°– 6°, вторая зона 6°–12° и т. д.

Принятая в России зона шириной 6° совпадает с колонной листов Государственной карты масштаба 1:1 000 000, но номер зоны не совпадает с номером колонны листов этой карты.

Счет зон ведется от Гринвичского меридиана, а счет колонн от меридиана 180°.

Как мы уже говорили, началом координат каждой зоны является точка пересечения экватора со средним (осевым) меридианом зоны, который изображается в проекции прямой линией и является осью абсцисс. Абсциссы считаются положительными к северу от экватора и отрицательными к югу. Осью ординат является экватор. Ординаты считаются положительными к востоку и отрицательными к западу от осевого меридиана (рис. 2.25).

Так как абсциссы отсчитываются от экватора к полюсам, то для территории России, расположенной в северном полушарии, они будут всегда положительными. Ординаты же в каждой зоне могут быть как положительными, так и отрицательными, в зависимости от того, где находится точка относительно осевого меридиана (на западе или востоке).

Чтобы удобно было делать вычисления, необходимо избавиться от отрицательных значений ординат в пределах каждой зоны. Кроме того, расстояние от осевого меридиана зоны до крайнего меридиана в самом широком месте зоны примерно равно 330 км (рис. 2.25). Чтобы делать расчеты, удобнее брать расстояние, равное круглому числу километров. С этой целью ось X условно отнесли к западу на 500 км. Таким образом, за начало координат в зоне принимают точку с координатами x = 0, y = 500 км. Поэтому ординаты точек, лежащих западнее осевого меридиана зоны, будут иметь значения меньше 500 км, а точек, лежащих восточнее осевого меридиана, – более 500 км.

Так как координаты точек повторяются в каждой из 60 зон, впереди ординаты Y указывают номер зоны.

Для нанесения точек по координатам и определения координат точек на топографических картах имеется прямоугольная сетка. Параллельно осям X и Y проводят линии через 1 или 2 км (взятых в масштабе карты), и поэтому их называют километровыми линиями , а сетку прямоугольных координат – километровой сеткой .

ЛЕКЦИЯ №4

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ

K артографическими проекциями называют математические способы изображения на плоскости поверхности земного эллипсоида или шара. Изображение градусной сетки Земли на карте называют картографической сеткой, а точки пересечения меридианов и параллелей - узловыми точками.

Построение карт включает сначала изображение на плоскости (бумаге) картографической сетки, а затем заполнение клеток сетки контурами и другими обозначениями географических объектов. Построение сетки может быть осуществлено различными способами. Так, при применении перспективных проекций картографическая сетка получается как бы проектированием узловых точек с поверхности шара на плоскость (рис.4) или на другую геометрическую поверхность (конус, цилиндр), которая затем развертывается в плоскость без искажений. Пример практического построения перспективным способом картографической сетки северного полушария приведен на рисунке 4.

Картинная плоскость Р касается здесь поверхности северного полушария в точке Северного полюса. Прямолинейными проектирующими лучами из центра К узловые точки пересечения меридиана с экватором и параллелями 30° и 60° широты переносятся на картинную плоскость. Тем самым определяются радиусы этих параллелей на плоскости. Меридианы изображаются на плоскости прямыми линиями, исходящими из точки полюса и отстоящими друг от друга под равными углами. На рисунке изображена половина сетки. Вторую половину легко мысленно представить, а при необходимости и построить.

Построение карты методами перспективных проекций не требует использования высшей математики, поэтому их начали применять еще задолго до ее разработки, с глубокой древности. Ныне в картографическом производстве карты строят неперспективными метода ми - путем расчета положения узловых точек картографической сетки на плоскости. Расчет выполняют, решая систему уравнений, связывающих широту и долготу узловых точек с их прямоугольными координатами X и Y на плоскости. Применяемые при этом уравнения довольно сложны. Примером сравнительно простых формул могут быть следующие:

Х=R´ sin j

Y= R ´ cos j-sinl.

В этих уравнениях R - радиус (средний) Земли, округленно принимаемый за 6370 км, а j, l - географические координаты узловых точек.

Классификация картографических проекций

Применяемые для построения географических карт проекции можно группировать по разным классификационным признакам, из которых основными являются: а) вид «вспомогательной поверхности» и ее ориентировка, б) характер искажений.

Классификация картографических проекций по виду вспомога тельной поверхности и ее ориентировке. Картографические сетки карт получают в современном производстве аналитическим путем. Однако в названиях проекций сохранены по традиции термины «цилиндрические», «конические» и другие, соответствующие способам геометрических построений, к которым в прошлом прибегали для построения сеток) Использование при объяснении этих терминов поможет уяснить особенности полученных на их основе картографических сеток. В настоящее время данный классификационный признак трактуется как вид нормальной картографической сетки

Цилиндрические проекции . При построении цилиндрических проекций представляют, что узловые точки, а значит, и линии градусной сети проектируют с шаровой поверхности глобуса на боковую поверхность цилиндра, ось которого совпадает с осью глобуса, а диаметры обоих тел равны (рис.5). Используя касательный цилиндр в качестве вспомогательной поверхности, учитывают, что узловые точки экватора - А, В, С, D и другие одновременно находятся и на глобусе, и на цилиндре. Другие же узловые точки переносятся с глобуса на поверхность цилиндра. Так, точки Е и F , расположенные на одном меридиане с точкой С, переносятся в точки £" и F \ При этом они на цилиндре расположатся на прямой, перпендикулярной линии экватора. Это и определяет форму меридианов в данной проекции. Параллели на поверхность цилиндра проектируются в форме окружностей, параллельных линии экватора (например, параллель, в которой находятся точки F [ и e").

При развертке поверхности цилиндра в плоскость все линии картографической сетки оказываются прямыми, меридианы перпендикулярны параллелям и отстоят друг от друга на равных расстояниях. Таков общий вид картографической сетки, построенной с помощью цилиндра, касательного к глобусу и имеющего с ним общую ось

У таких цилиндрических проекций линией нулевых искажений служит экватор, а изоколы имеют форму прямых, параллельных экватору; главные направления совпадают с линиями картографической сетки, при этом с удалением от экватора искажения увеличиваются.

В этих проекциях применяют также проектирование на цилиндры с диаметром меньшим, чем диаметр глобуса, и по-разному относительно глобуса расположенные. В зависимости от ориентировки цилиндра полученные картографические сетки (как и сами проекции) называют нормальными, косыми или поперечными. Нормальные цилиндрические сетки строят на цилиндрах, оси которых совпадают с осью глобуса; косые - на цилиндрах, ось которых составляет с осью глобуса острый угол; поперечные сетки образуются с помощью цилиндра, ось которого составляет прямой угол с осью глобуса.

Нормальная цилиндрическая картографическая сетка на касательном цилиндре имеет линию нулевых искажений на экваторе. Нормальная сетка на секущем цилиндре имеет две линии нулевых иска­жений, расположенных вдоль параллелей сечения цилиндра с глобусом (с широтами j1 и j2). При этом, вследствие сжатия участка сетки между линиями нулевых искажений, масштабы длин по параллелям оказываются здесь меньше главного; во внешнюю же сторону от линий нулевых искажений они больше главного масштаба - как результат растяжения параллелей при проектировании с глобуса на цилиндр.

Косая цилиндрическая сетка на секущем цилиндре имеет в северной части линию нулевых искажений в форме прямой, перпендикулярной к среднему меридиану карты и касательной к параллели с широтой j; внешний вид сетки представлен кривыми линиями меридианов и параллелей.

Примером поперечной цилиндрической проекции может служить проекция Гаусса-Крюгера, в которой каждый поперечно расположенный цилиндр используется для проектирования поверхности одной зоны Гаусса.

Конические проекции. Для построения картографических сеток в конических проекциях используют нормальные конусы - касательный или секущий.

рис.6

рис.7

У всех нормальных конических проекций специфичен внешний вид картографической сетки: меридианы - прямые, сходящиеся в точке, изображающей на плоскости вершину конуса, параллели - дуги концентрических окружностей с центром в точке схода меридианов. У сеток, построенных на касательных конусах, одна линия нулевых искажений, с удалением от которой искажения увеличиваются (рис.6). Изоколы у них имеют форму дуг окружностей, совпадающих с параллелями. Сетки, построенные на секущем конусе (рис. 6 Б), имеют тот же облик, но иное распределение искажений: линий нулевых искажений у них две. Между ними частные масштабы вдоль параллелей меньше главного, а на внешних участках сетки - больше главного масштаба. Главные направления у всех нормальных конических сеток совпадают с меридианами и параллелями.

Азимутальные проекции. Азимутальными называют картографические сетки, которые получают проектированием градусной сетки глобуса на касательную плоскость (рис.). Нормальную ази мутальную сетку получают в результате переноса на плоскость, касательную к глобусу в точке полюса (рис. 7 А), попереч ную - при касании плоскости в точке экватора (рис. 7, Б) и ко сую - при переносе на иначе ориентированную плоскость (рис.7 , В). Внешний вид сеток хорошо виден на рисунке 7.

Все азимутальные сетки имеют в отношении искажений следующие общие свойства: точкой нулевых искажений (ТНИ) служит точка касания глобуса с плоскостью (обычно она располагается в центре карты); величины искажений с удалением во все стороны от ТНИ возрастают, поэтому изоколы у азимутальных проекций имеют форму концентрических окружностей с центром в ТНИ. Главные направления следуют по радиусу и перпендикулярным им линиям. Название этой группы проекций связано с тем, что на картографической сетке, построенной в азимутальной проекции, в бывшей точке касания глобуса и плоскости (т. е. в точке нулевых искажений) азимуты всех направлений не искажаются

Поликонические проекции. Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 8. Буквами на рисунке 8, А обозначены вершины конусов.,На каждый проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса. После развертки конусов получают изображение этих участков в виде полос на плоскости; полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений.

рис.8

Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего - прямого), а параллели - дуги эксцентрических окружностей. В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.

Картографические сетки в поликонических проекциях имеют в приэкваториальных участках масштабы длин, близкие к главным. Вдоль меридианов и параллелей они увеличены сравнительно с главным масштабом, что особенно заметно в периферийных частях. Соответственно в этих частях значительно искажены и площади

Условные проекции . К условным относят такие проекции, в которых вид получаемых картографических сеток невозможно представить на основе проектирования на какую-нибудь вспомогательную поверхность. Получают их часто аналитическим путем (на основе решения систем уравнений). Это очень большая группа проекций. Из них выделяют по особенностям внешнего вида картографической сетки псевдоцилиндрические проекции (рис.9). Как видно из рисунка, у псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу (что роднит их с цилиндрическими проекциями), а меридианы у них - кривые линии.

Рис.9

.

Вид эллипсов искажений в проекциях равновеликих - А, равноугольных - Б, произвольных - В, в том числе, равнопромежуточных по меридиану - Г и равнопромежуточных по параллели - Д. На схемах показано искажение угла 45°

Картографические проекции различают по характеру искажений и по построению. По характеру искажений выделяют проекции:

1) Равноугольные, сохраняющие величину углов, здесь а= b . Эллипсы искажений имеют вид окружностей разной площади.

2) Равновеликие, сохраняющие площади объектов. В них р =mn cos e =l; следовательно, увеличение масштаба длин по параллелям вызывает уменьшение масштаба длин по меридианам и искажение углов и форм.

3) Произвольные, искажающие углы и площади. Среди них выделяется группа равнопромежуточных проекций, в которых сохраняется главный масштаб по одному из главных направлений.

Большое практическое значение имеет подразделение проекций по территориальному охвату на проекции для карт мира, полушарий, материков и океанов, государств и их частей.

Ниже приведены таблицы внешних признаков широко распространенных проекций для разных территорий, составленные.

Таблица 1

Таблица для определения картографических сеток карт восточного и западного полушарий

Как изменяются промежутки по:

Среднему меридиану и экватору

Меридиану и экватору от центра к краям полушария

Какими линиями изображаются параллели

Название проекций

Уменьшаются от 1 приблизительно до 0,7

Кривыми, увеличивающими кривизну с удалением от среднего меридиана к крайним

Равновеликая экваториальная азимутальная Ламберта

Уменьшаются от 1 приблизительно до 0,8

Экваториальная азимутальная Гинзбурга

Увеличиваются от 1 приблизительно до 2

Дугами окружностей

Экваториальная стереографическая

Сильно уменьшаются

Экваториальная ортографическая

Таблица 2

Таблица для определения проекций картографических сеток мировых карт

Форма рамки, карты или вид всей сетки

Какими линиями изображаются параллели и меридианы

Как изменяются, промежутки по среднему меридиану с удалением от экватора

Название проекции

Рамка-прямоугольник

Параллели-прямые, меридианы-кривые

Увеличиваются между параллелями 70 и 80° почти в 1,5 раза больше чем между экватором и параллелью 10°

Псевдоцилин-дрическая проекция ЦНИИГАиК

Сетка и рамка- прямоугольник

Параллели и меридианы-прямые

Сильно увеличиваются: между параллелями 60 и 80° приблизительно в 3 раза больше, чем между экватором и параллелью 20°

Цилиндрическая Меркатора

Сетка и рамка- прямоугольник

Параллели меридианы-прямые

Увеличиваются:

параллелями

приблизительно

в 2 2/з раза

больше, чем

между экватором

и параллелью 20°

Цилиндрическая Урмаева

Определение картографических проекций географических карт определяют при помощи таблиц и вычислений. Прежде всего выясняют, какая территория изображена на анализируемой карте и какой таблицей следует воспользоваться при определении проекции. Затем определяют вид параллелей и меридианов и характер промежутков между параллелями по прямому меридиану. Определяют также характер меридианов: не являются ли они прямыми или же прямой только средний меридиан а остальные - кривые, симметричные относительно среднего. Прямолинейность меридианов проверяется при помощи линейки. Если меридианы оказались прямыми, уточняют, параллельны ли они между собой. При рассмотрении параллелей выясняют, являются ли параллели дугами окружностей, кривыми или прямыми линиями. Это устанавливается путем сравнения стрелок провеса для дуг равных хорд: при равных стрелках провеса линии - дуги окружностей, при неравных стрелках провеса параллели - сложные кривые. Для выяснения характера кривизны линии можно поступить также следующим образом. На листе кальки отмечают три точки этой кривой. Если при передвижении листка вдоль линии все три точки совпадут с кривой, то данная кривая будет дугой окружности. Если параллели окажутся дугами, следует проверить их концентричность, для чего измеряют расстояния между соседними параллелями в середине карты и на краю. При постоянстве этих расстояний дуги концентричны.

Как прямые конические, так и азимутальные полярные проекции имеют прямолинейные, расходящиеся из одной точки меридианы. Участок сетки прямой конической проекции можно отличить от участка сетки полярной азимутальной проекции путем измерения угла между двумя меридианами, отстоящими друг от друга на 60-90°. Если этот угол оказался меньше соответствующей разности долгот, подписанных на карте, то это - коническая проекция, если равен разности долгот - азимутальная.

Определение средних размеров искажений для географических объектов может быть выполнено двумя путями:

1) посредством измерения отрезков меридианов и параллелей по карте и последующих вычислений по формулам;

2) по картам с изоколами.

В первом случае сначала вычисляют частные масштабы по меридианам (т) и параллелям \{п) и выражают их в долях главного масштаба:

где -l 1 длина дуги меридиана на карте, L 1 -длина дуги меридиана на эллипсоиде, l 2 - длина дуги параллели на карте, L 2 - длина дуги параллели на эллипсоиде { L 1 и L 2 берут из таблиц приложения; М - знаменатель главного масштаба.

Затем измеряют на карте транспортиром угол e между касательными к параллели и меридиану в заданной точке; определяют отклонение угла q от 90°; e =q -90°.

На основе известных формул, вычисляют величины искажений р, a , b , w , к.

Во втором случае – используют карты изокол. С этих карт берут значения для 2-3 точек объектов с точностью, допускаемой визуальным интерполированием, затем можно установить, к какой группе по характеру искажений относится данная проекция.