Чем определяется степень организованности системы управления. Классификация систем: открытые - закрытые, по сложности структуры и поведения

Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принци­пы классификации. При этом систему можно охарактеризовать одним или несколькими признаками. Чаще всего системы классифицируются следующим образом:

· по виду научного направления - математические, физи­ческие, химические и т. п.;

· по степени определенности функционирования: детерминированные и вероятностные. Детерминированной называют систему, если ее поведение можно абсолютно точно предвидеть. Система, состояния которой зависит не только от контролируемых, но и от неконтролируемых воздействий или если в ней самой находится источник случайности, носит название вероятностной . Приведем пример стохастических систем, это - заводы, аэропорты, сети и системы ЭВМ, магазины, предприятия бытового обслуживания и т.д.

· по степени организованности - хорошо организован­ные, плохо организованные (диффузные), самоорганизующиеся системы.

· по происхождению различают системы естественные, созданные в ходе естественной эволюции и в целом не подверженные влиянию человека (клетка), и искусственные, созданные под воздействием человека, обусловленные его интересами и целями (машина).

· по основным элементам системы могут быть разделены на абстрактные, все элементы которых являются понятиями (языки, философские системы, системы счисления), и конкретные, в которых присутствуют материальные элементы.

· по взаимодействию со средой различают системы замкнутые и открытые. Замкнутая система в процессе своего функционирования использует только ту информацию, которая вырабатывается в ней самой (система кондиционирования воздуха в замкнутом объеме). В открытойсистеме функционирование определяется как внутренней, так и внешней, поступающей на входы, информацией. Большинство изучаемых систем являются открытыми, т.е. они испытывают воздействие среды и реагируют на него и, в свою очередь, оказывают воздействие на среду.

· по степени сложности различают простые, сложные и очень сложные системы. Простые системы характеризуются небольшим числом элементов, связи между которыми легко поддаются описанию (средства механизации, простейшие организмы). Сложные системы состоят из большого числа элементов и характеризуются разветвленной структурой, выполняют более сложные функции. Изменения отдельных элементов и (или) связей влечет за собой изменение многих других элементов. Но все же отдельные конкретные состояния системы могут быть описаны (автоматы, ЭВМ, галактики). Очень сложные системы характеризуются большим числом разнообразных элементов, обладают множеством структур, не могут быть полностью описаны (мозг, хозяйство).

· по естественному разделению системы делятся на: технические, биологические, социально-экономические. Технические – это искусственные системы, созданные человеком (машины, автоматы, системы связи). Биологические – различные живые организмы, популяции, биогеоценозы и т.п. Социально-экономические – системы существующие в обществе, обусловленные присутствием и деятельностью человека (хозяйство, отрасль, бригада и т.п.).

· по определению выходных сигналов . Динамические системы характеризуются тем, что их выходные сигналы в данный момент времени определяются характером входных воздействий в прошлом и настоящем (зависит от предыстории). В противном случае системы называют статическими. Примером динамических систем является биологические, экономические, социальные системы; такие искусственные системы как завод, предприятия, поточная линия и т.д.

· по изменению во времени . Если вход и выход системы измеряется или изменяется во времени дискретно, через шаг t, то система называется дискретной . Противоположным понятием является понятие непрерывной системы . Например: ЭВМ, электронные часы, электросчетчик - дискретные системы; песочные часы, солнечные часы, нагревательные приборы и т.д. - непрерывные системы.

· По типу организации : централизованные (однополюсные, иерархические, биполярные с входным и выходным полюсами); децентрализованные (многополюсные сети, сети без полюсов с различной произвольной топологией; матрич­ные сети с регулярной топологией, сети смешанной топо­логии: регулярной и произвольной)

· По составу функций : одно- или многофункциональ­ные, с постоянным или переменным составом функций;

Объектом изучения системного анализа являются в большинстве своем стохастические открытые сложные и очень сложные системы любого происхождения.

Рассмотрим некоторые виды систем более подробно.

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со сред­ствами, т. е. в виде критерия эффективности, критерия функци­онирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при пред­ставлении ее в виде хорошо организованной системы осуществ­ляется аналитическими методами формализованного представле­ния системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравне­ний, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.). Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детермини­рованное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. По­пытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или мно­гокритериальных задач плохо удаются: они требуют недопусти­мо больших затрат времени, практически нереализуемы и неадек­ватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ста­вится задача определить все учитываемые компоненты, их свой­ства и связи между ними и целями системы. Система харак­теризуется некоторым набором макропараметров и закономер­ностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помо­щью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой довери­тельной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслужива­ния, определении численности штатов на предприятиях и учреж­дениях, исследовании документальных потоков информации в си­стемах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий ис­следовать наименее изученные объекты и процессы. Самооргани­зующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных па­раметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к из­меняющимся условиям среды, изменять структуру при взаимо­действии системы со средой, сохраняя при этом свойства целост­ности; способность формировать возможные варианты поведе­ния и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприс­посабливающиеся системы, самовосстанавливающиеся, самовос­производящиеся и другие подклассы, соответствующие различ­ным свойствам развивающихся систем. Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, к; правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.

Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.

Большие и сложные системы . Существует ряд подходов к разделению систем по сложности. В частности, Г. Н. По варовв зависимости от числа элементов, входящих в систему, выделяет четыре класса систем: малые системы (10...10 3 элементов), сложные (10 4 ...10 7 элементов), ультрасложные (10 7 . ..10 30 элементов) суперсистемы (10 30 .. .10 200 элементов). Так как понятие элемент; возникает относительно задачи и цели исследования системы, то и данное определение сложности является относительным, а не абсолютным.

Английский кибернетик С. Бир классифицирует все кибернетические системы на простые и сложные в зависимости от способа описания: детерминированного или теоретико-вероятностного. А. И. Берг определяет сложную систему как систему, которую можно описать не менее чем на двух различных мате­матических языках (например, с помощью теории дифференци­альных уравнений и алгебры Буля).

Очень часто сложными системами называют системы, кото­рые нельзя корректно описать математически, либо потому, что в системе имеется очень большое число элементов, неизвестным образом связанных друг с другом, либо неизвестна природа явлений, протекающих в системе. Все это свидетельствует об отсутствии единого определения сложности системы.

Так же дается следующее определение: сложной системой называется система, в модели которой недостаточно информации для эффективного управления этой системой. Таким образом, признаком простоты системы является достаточность информации для ее управления. Если же результат управления, полученный с помощью модели, будет неожиданным, то такую систему относят к сложной. Для перевода системы в разряд простой необходимо получение недостающей информации о ней и включение ее в модель.

При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составляющих элементов и подсистем, но также к закономерностям функционирования системы в целом. При этом появляется широкий круг специфи­ческих задач, таких, как определение общей структуры системы; организация взаимодействия между элементами и подсистемами; учет влияния внешней среды; выбор оптимальных режимов функ­ционирования системы; оптимальное управление системой и др.

Чем сложнее система, тем большее внимание уделяется вышеуказанным вопросам. Математической базой исследования сложных систем является теория систем. В теории систем большой системой сложной, системой большого масштаба,(Large Scale Systems) называют систему, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов и способна выполнять сложную функцию.

От сложных систем необходимо отличать большие системы.

Под большой системой понимается совокупность материаль­ных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и лю­дей-руководителей, облеченных надлежащими правами и ответ­ственностью для принятия решений. Материальные ресурсы - это сырье, материалы, полуфабрикаты, денежные средства, раз­личные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей. Таким образом, система , для актуализации модели которой в целях управления недостает материальных ресурсов (машинного времени, емкости памяти, других материальных средств моделирования) называетсябольшой . К таким системам относятся экономические, организационно-управленческие, биологические нейрофизиологические, и т.п. системы.

Характерные особенности больших систем. К подобным отличительным особенностям относятся следующие:

· большое число элементов в системе (сложность системы);

· взаимосвязь и взаимодействие между элементами;

· иерархичность структуры управления;

· обязательное наличие человека в контуре управления, на которого возлагается часть наиболее ответственных функций управления.

Примеры больших систем: информационная система; пассажирский транспорт крупного города; производственный процесс; система управления полетом крупного аэродрома; энергетическая система и др.

Способом перевода больших систем в простые является создание новых более мощных средств вычислительной техники. Однако, четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Простая система может находиться только в двух состояниях: состоянии работоспособности (исправном) и состоянии отказа (неисправном). При отказе элемента простая система либо полностью прекращает выполнение своей функции, либо продолжает ее выполнение в полном объеме, если отказавший элемент резервирован. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою очередь, затрудняет формулировку понятия «отказ» системы.

Контрольные вопросы

1. Что представляет собой общая теория систем?

2. Что такое кибернетика?

3. Что такое теория информации?

4. Что такое теория игр?

5. Что такое факторный анализ?

6. Опишите подходы к созданию общей теории систем?

7. Раскройте понятие «система».

8. В чем особенности сложной системы?

9. Чем сложные системы отличаются от больших систем?

10. Дайте определения следующим понятиям: объект, подсистема, структура, функция, связь.

11. Опишите основные закономерности систем.

12. Дайте классификацию систем по основным признакам.

13. Опишите отличие сложных систем от больших.


Тема№4
Моделирование систем

4.1. Понятия «модель» и «моделирование». Абстрактная модель системы произвольной природы

Так как общая теория систем рассматривает не некоторые конкретные системы, а то общее, что есть в различных системах независимо от их природы, предметом ее изучения являются абстрактные модели соответствующих реальных систем.

Модель является представлением реального объекта, системы или понятия в некоторой форме, отличной от формы их реального существования.

Всякая модель - это некоторая аналогия: для одной системы должна существовать другая система, элементы которой с некоторой точки зрения подобны элементам первой. Должно существовать отображение, которое элементам моделируемой системы ставит в соответствие элементы некоторой другой системы - моделирующей. Кроме того, должно существовать отображение, которое свойствам элементов моделируемой системы ставит в соответствие свойства элементов моделирующей системы.


Для большинства случаев абстрактная модель системы произвольной природы может быть представлена с помощью схемы, изображенной на рисунке 4.1, которая является, по сути, иллюстрацией к введенным понятиям.

Система не существует сама по себе, а выделяется из окружающей среды по какому-либо системообразующему признаку, в качестве которого чаще всего выступает цель системы. Взаимодействие системы с внешней средой осуществляется через вход и выход системы (множество входных и выходных параметров).

Под входными параметрами системы понимается комплекс параметров внешней среды (в том числе выходные параметры систем, внешних по отношению к рассматриваемой, например, систем управления), оказывающих значительное влияние на состояние и значение выходных параметров рассматриваемой системы и поддающихся учету и анализу средствами, имеющимися в распоряжении исследователя.

Выходные параметры - это комплекс параметров системы, оказывающих непосредственное влияние на состояние внешней среды и значимых с точки зрения цели исследования.

Важной особенностью функционирования сложных систем является принципиальная неопределенность истинного состояния внешней среды в каждый момент времени. Природа этой неопределенности связана с наличием ряда причин, важнейшие из которых обусловлены следующими факторами.

· О некоторых, возможно, непосредственно влияющих на поведение системы параметрах внешней среды (то есть параметрах, которые следовало бы отнести к категории «входных») исследователь часто не знает, и, следовательно, не может их учитывать.

· Некоторые параметры внешней среды не могут быть измерены в силу технической неприспособленности информационных средств.

· Численные значения учитываемых параметров оцениваются с ошибками измерений, определяемыми с одной стороны - внутренними шумами измерительных устройств, а с другой - внешними помехами.

Воздействие на систему подобных неучтенных факторов компенсируется введением в модель дополнительных связей - внешних возмущающих воздействий или «шумов».

Система может находиться в различных состояниях. Состояние любой системы в определенный момент времени можно с определенной точностью охарактеризовать совокупностью значений параметров состояния .

Таким образом, система характеризуется тремя группами переменных:

1. Входные переменные, которые генерируются системами, внешними относительно исследуемой

2.4 Классификация систем по степени организованности

Разделение систем по организованности соответствует их характеристикам. Это такие системы как: хорошо организованные; плохо организованные; развивающиеся или самоорганизующиеся.

К хорошо организованным системам относим объекты с хорошо определенными элементами, взаимосвязями между ними, четко поставленными целями и задачами, связанными со средствами. Хорошо организованным системам характерны системы показателей функционирования, показателей эффективности, инструментов реализации управления, контроля и обратной связи.

При представлении объекта в виде плохо организованной, или диффузной, системы не ставится задача определить все компоненты и их связи с целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования определенной с помощью некоторых правил достаточно представительной выборки компонентов, отображающих исследуемый объект или процесс. На основе подобного, выборочного исследования получают характеристики или закономерности, которые распространяются на поведение системы в целом с какой-то вероятностью.

Класс самоорганизующихся или развивающихся систем характеризуется рядом признаков, особенностей, которые, как правило, обусловлены наличием в системе активных элементов, носящих двойственный характер, являясь одновременно и полезными для существования системы своими свойствами хорошему приспособлению к изменяющимся условиям среды, но в то же время вызывающие неопределенность, затрудняющие управление системой. Рассматриваемый класс систем можно разбить на подклассы, выделив адаптивные или самоприспосабливающиеся системы, самообучающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся классы систем.

Взаимосвязь цены, спроса и предложения

В зависимости от этого классификационного признака различают следующие виды цен: 1. Свободные цены свободно складываются на рынке под воздействием спроса и предложения...

Виды и оптимальная величина фирм в мировой практике

По этому признаку предприятия подразделяются на малые, средние и крупные. По уровню концентрации и централизации производства и капитала предприятия делят на малые (мелкие), средние и большие (крупные)...

Информационные системы в экономике

Классифицировать информационные системы можно по различным признакам...

Классификация и анализ экономических систем и моделей

Экономические системы с момента своего возникновения и до наших дней прошли значительный эволюционный путь развития. Поэтому к настоящему времени насчитывается множество различных их видов и типов...

Понятие, типы и виды фирм

По этому признаку предприятия подразделяются на малые, средние и крупные. Малые предприятия Малые - самая многочисленная форма предприятий, и в большинстве стран они представляют собой фундамент...

Признаки классификации рынка недвижимости (по назначению товаров, средств и т.д; по географическому положению, по степени ограничения конкурентности, по отраслям, по степени законности)

Пути совершенствования логистической системы ООО "Уралинтерьер"

Ло??гистические системы делят на макро?? и микро??ло??гистические системы. Макро??ло??гистическая система - это?? крупная система управления материальными по??то??ками...

Формирование цены на продукцию автотранспортного предприятия

По степени и способу регулирования цены разделяются на группы: жёсткофиксированные(назначаемые);регулируемые(изменяемые);договорные(контрактные);свободные(рыночные). Жёсткофиксированные...

Фракталы как степень организованности инвестиционных процессов

Фракталы -- это структуры, которые, несмотря на некоторые отличия в разных масштабах, выглядят приблизительно одинаково. По несколько поэтическому высказыванию одного из основоположников науки о фракталах Б. Мандельброта...

Экономические системы от момента своего возникновения и до наших дней прошли значительный эволюционный путь развития. Поэтому к настоящему времени насчитывается множество различных их видов и типов...

Экономическая система общества

Классификация - особая форма систематизации, которая дает возможность ориентироваться в каком-то множестве. Первым уровнем классификации обычно служит выделение типов явлений и предметов. Этот процесс называется типизацией...

Экономическая система, ее составные элементы, взаимосвязи между ними

В экономической теории существует разное видение развития общества и, следовательно, разнообразные классификации экономических систем. Например, существует формационная теория, разработанная К. Марксом...

Экономические системы

Науке известны многочисленные классификации экономических систем, которые различаются исходными концепциями авторов классификаций. Первая - очень старая классификация, основанная на материалах...

Экономические системы общества

Историческая классификация включает помимо современных экономических систем, экономические системы прошлого и будущего. В этой связи заслуживает внимания классификация, предложенная представителями теории постиндустриального общества...

Электронная коммерция

Электронная коммерция это способ ведения бизнеса, при котором все этапы бизнес-процесса (реклама, маркетинг, продажа, доставка товара, послепродажное обслуживание...

По степени организованности (упорядоченности) информацию можно разделить на документированную и недокументированную.

Документированная информация - это зафиксированная на материальном носителе путем документирования информация с реквизитами, позволяющими ее идентифицировать, определить такую информацию, или в установленных законодательством Российской Федерации случаях ее материальный носитель (ст. 2 федерального закона Российской Федерации от 27.07.2006 № 149-ФЗ «Об информации, информатизации и защите информации»).

Недокументированная информация остается за пределами правового регулирования.

Классификация по роли в правовой системе

По роли в правовой системе информация разделяется на правовую и неправовую.

Неправовая - создается не как результат правовой деятельности, но обращается в соответствии с предписаниями правовых норм. Например, объект гражданского права - информация.

Правовая - создается в результате правотворческой, правоприменительной, правоохранительной деятельности: нормативная правовая информация и ненормативная правовая информация.

Нормативная правовая информация создается в порядке правотворческой деятельности и содержится в нормативных правовых актах федерального уровня, субъектов Российской Федерации, органов местного самоуправления. информация правовой гражданский

Ненормативная правовая информация создается, как правило, в порядке правоприменительной и правоохранительной деятельности. С помощью такой информации реализуются предписания правовых норм. Эта информация создается в объекте управления и движется в контуре обратной связи системы правового управления. К ненормативной правовой информации относятся: судебная, уголовная и прокурорская статистика; информация о соблюдении прав и свобод человека (в том числе и по представлению Уполномоченного по правам человека); информация о гражданско-правовых отношениях, договорных и иных обязательствах (договоры, соглашения и т.п. документы); информация, представляющая административную деятельность органов исполнительной власти и местного самоуправления по исполнению нормативных предписаний; информация судов и судебных органов (судебные дела, судебные решения и т.п.) и т.д.

Разделение систем по степени организованности предложено в продолжение идеи об их разделении на хорошо организованные и плохо организованные , или диффузные . К этим двум классам был добавлен еще класс развивающихся (самоорганизующихся) систем. Эти классы кратко охарактеризованы в табл. 1.4.

Таблица 1.4

Класс системы Краткая характеристика Возможности применения
1. Хорошо организованная Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех случаях, когда исследователю удается определить все ее элементы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей. В этот класс систем включается большинство моделей физических процессов и технических систем.
При представлении объекта этим классом систем задачи выбора целей и определения средств их достижения (элементов, связей) не разделяются
Этот класс систем используется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения, т.е. экспериментально доказана адекватность модели реальному объекту или процессу
2. Плохо организованная (диффузная) При представлении объекта в виде плохо организованной (диффузной) системы не ставится задача определить все компоненты и их связи с целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования определенной с помощью некоторых правил достаточно представительной выборки компонентов, отображающих исследуемый объект или процесс.
Нa основе такого, выборочного , исследования получают характеристики или закономерности (статистические, экономические и т.п.), и распространяют эти закономерности на поведение системы в целом с какой-то вероятностью (статистической или в широком смысле использования этого термина)
Отображение объектов в виде диффузных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например ремонтных цехах предприятия, в обслуживающих учреждениях (для решения подобных задач применяют методы теории массового обслуживания) и т.д. При применении этого класса систем основной проблемой становится доказательство адекватности модели
3. Самоорганизующаяся (развивающаяся) Класс самоорганизующихся (развивающихся) , систем характеризуется рядом признаков, особенностей, приближающих их к реальным развивающимся объектам (см. подробнее в табл. 1.5).
При исследовании этих особенностей выявлено важное отличие развивающихся систем с активными элементами от закрытых — принципиальная ограниченность их формализованнoго описания .
Эта особенность приводит к необходимости сочетания формальных методов и методов качественного анализа. Поэтому основную идею отображения проектируемого объекта классом самоорганизующихся систем можно сформулировать следующим образом. Разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компоненты и связи, а затем путем преобразования полученного отображения с помощью выбранных или принятых подходов и методов (структуризации, декомпозиции; композиции , поиска мер близости на пространстве состояний и т.п.) получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения. Таким образом, можно накапливать информацию об объекте, фиксируя при этом все новые компоненты и связи (правила взаимодействия компонентов), и, применяя их, получать отображения последовательных состояний развивающейся системы, постепенно формируя все более адекватную модель реального, изучаемого или создаваемого объекта
Отображение изучаемого объекта как системы этого класса позволяет исследовать наименее изученные объекты и процессы с большой неопределенностью на начальном этапе постановки задачи. Примерами таких задач являются задачи, возникающие при проектировании сложных технических комплексов, исследовании и разработке систем управления организациями.
Большинство из моделей и методик системного анализа основано на представлении объектов в виде самоорганизующихся систем, хотя не всегда это особо оговаривается. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей

В предложенной классификации систем использованы существовавшие к середине 70-х гг, ХХ в. термины, но они объединены в единую классификацию, в которой выделенные классы рассматриваются как подходы к отображению объекта или решению задачи и предлагается их характеристика, позволяющая выбирать класс систем для отображения объекта в зависимости от стадии его познания и возможности получения информации о нем.

Проблемным ситуациям с большой начальной неопределенностью в большей мере соответствует представление объекта в виде системы третьего класса. В этом случае моделирование становится как бы своеобразным «механизмом» развития системы. Практическая реализация такого «механизма» связана с необходимостью разработки порядка построения модели процесса принятия решения. Построение модели начинается с применения знаковой системы (языка моделирования), в основе которой лежит один из методов дискретной математики (например, теоретико-множественные представления, математическая логика, математическая лингвистика) или специальных методов системного анализа (например, имитационное динамическое моделирование и т.д.). При моделировании наиболее сложных процессов (например, процессов формирования структур целей, совершенствования организационных структур и т.п.) «механизм» развития (самоорганизации) может быть реализован в форме соответствующей методики системного анализа. На рассмотренной идее отображения объекта в процессе представления его классом самоорганизующихся систем базируется и метод постепенной формализации модели принятия решений, характеризуемый в гл. 4.

Класс самоорганизующихся (развивающихся) , систем характеризуется рядом признаков или особенностей, приближающих их к реальным развивающимся объектам (табл. 1.5).

Таблица 1.5

Особенность Краткая характеристика
Нестационарность (изменчивость, нестабильность) параметров и стохастичность поведения Эта особенность легко интерпретируется для любых систем с активными элементами (живых организмов, социальных организаций и т.п.), обусловливая стохастичность их поведения
Уникальность и непредсказуемость поведения системы в конкретных условиях Эти свойства проявляются у системы, благодаря наличию в ней активных элементов, в результате чего у системы как бы проявляется «свобода воли», но в то же время но в то же время имеет место и наличие предельных возможностей , определяемых имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями
Способность адаптироваться к изменяющимся условиям среды и помехам Это свойство, казалось бы, является весьма полезным. Однако адаптивность может проявляться не только по отношению к помехам, но и по отношению к управляющим воздействиям, что весьма затрудняет управление системой
Принципиальная неравновесность При исследовании отличий живых, развивающихся объектов от неживых биолог Эрвин Бауэр высказал гипотезу о том, что живое принципиально находится в неустойчивом, неравновесном состоянии и, более того, использует свою энергию для поддержания себя в неравновесном состоянии (которое и является собственно жизнью). Эта гипотеза находит все большее подтверждение в современных исследованиях. При этом возникают проблемы сохранения устойчивости системы
Способность противостоять энтропийным (разрушающим систему) тенденциям и проявлять негэнтропийные тенденции Она обусловлена наличием активных элементов, стимулирующих обмен материальными, энергетическими и информационными продуктами со средой и проявляющих собственные «инициативы», активное начало. Благодаря этому в таких системах нарушается закономерность возрастания энтропии (аналогичная второму закону термодинамики, действующему в закрытых системах, так называемому «второму началу»), и даже наблюдаются негэнтропийные тенденции, т.е. собственно самоорганизация , развитие, в том числе «свобода воли»
Способность вырабатывать варианты поведения и изменять свою структуру Это свойство может обеспечиваться с помощью различных методов, позволяющих формировать разнообразные модели вариантов принятия решений, выходить на новый уровень эквифинальности , сохраняя при этом целостность и основные свойства
Способность и стремление к целеобразованию В отличие от закрытых (технических) систем, которым цели задаются извне, в системах с активными элементами цели формируются внутри системы (впервые эта особенность применительно к экономическим системам была сформулирована Ю. И. Черняком); целеобразование - основа негэнтропийных процессов в социально-экономических системах
Неоднозначность использования понятий Например, «цель - средство», «система - подсистема» и т.п. Эта особенность проявляется при формировании структур целей, разработке проектов сложных технических комплексов, автоматизированных систем управления и т.п., когда лица, формирующие структуру системы, назвав какую-то ее часть подсистемой, через некоторое время начинают говорить о ней, как о системе, не добавляя приставки «под», или подцели начинают называть средствами достижения вышестоящих целей. Из-за этого часто возникают затяжные дискуссии, которые легко разрешаются с помощью закономерности коммуникативности, свойства «двуликого Януса»

Перечисленные признаки самоорганизующихся (развивающихся) систем имеют разнообразные проявления, которые иногда можно выделять как самостоятельные особенности. Эти особенности, как правило, обусловлены наличием в системе активных элементов и носят двойственный характер: они являются новыми свойствами, полезными для существования системы, ее приспособлению к изменяющимся условиям среды, но в то же время вызывают неопределенность, затрудняют управление системой.

Часть из рассмотренных особенностей характерна для диффузных систем (стохастичность поведения, нестабильность отдельных параметров ), но большинство из них являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.

В то же время при создании и организации управления предприятиями часто стремятся представить их, используя теорию автоматического регулирования и управления, разрабатывавшуюся для закрытых, технических систем и существенно искажающую понимание систем с активными элементами, что может нанести вред предприятию, сделать его неживым «механизмом», неспособным адаптироваться к среде и разрабатывать варианты своего развития.

Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Признаки систем не сразу можно понять и объяснить, выбрать и создать требуемую степень их проявления. Исследованием причин проявления подобных особенностей сложных объектов с активными элементами занимаются философы, психологи, специалисты по теории систем, которые для объяснения этих особенностей предлагают и исследуют закономерности систем .

Проявление противоречивых особенностей развивающихся систем и объяснение их закономерностей на примере реальных объектов необходимо изучать, постоянно контролировать, отражать в моделях и искать методы и средства, позволяющие регулировать степень их проявления.

При этом нужно иметь в виду важное отличие развивающихся систем с активными элементами от закрытых: пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что начиная с некоторого уровня сложности систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью .

По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось, и была осознана их основная особенность - принципиальная ограниченность формализованного описания развивающихся (самоорганизующихся) систем .

Эта особенность, т.е. необходимость сочетания формальных методов и методов качественного анализа, и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Детерминированность

Рассмотрим еще одну классификацию систем, предложенную Ст.Биром.

Если входы объекта однозначно определяют его выходы, то есть его поведение можно однозначно предсказать (с вероятностью 1), то объект является детерминированным в противном случае -- недетерминированным (стохастическим).

Детерминированность характерна для менее сложных систем;

стохастические системы сложнее детерминированных, поскольку их более сложно описывать и исследовать

Примеры стохастических систем:

  • 1. Швейную машинку можно отнести к детерминированной системе: повернув на заданный угол рукоятку машинки можно с уверенностью сказать, что иголка переместится вверх-вниз на известное расстояние (случай неисправной машинки не рассматриваем)
  • 2. Примером недетерминированной системы является собака, когда ей протягивают кость, нельзя однозначно прогнозировать поведение собаки.

Случайность -- это цепь невыявленных закономерностей, скрытых за порогом нашего понимания.

А с другой -- приблизительности измерений. В первом случae мы не можем учесть все факторы (входы), действующие на объект. Во втором -- проблема непредсказуемости выхода связана с невозможностью точно измерить значения входов и ограниченностью точности сложных вычислений.

Примеры. Ст. Бир предлагает следующую таблицу с примерами систем:

Классификация систем по степени организованности

Степень организованности системы

Впервые разделение систем по степени организованности по аналогии с классификацией Г. Саймона и А. Ньюэлла (хорошо структуризованные, плохо структуризованные и неструктуризованные проблемы) было предложено В.В. Налимовым, который выделил класс хорошо организованных и класс плохо организованных или вероятностных систем.

Позднее к этим двум классам был добавлен еще класс самоорганизующихся, сложных, систем, который включает рассматриваемые иногда в литературе раздельно классы саморегулирующихся, самообучающихся, самонастраивающихся и т.п. систем.

Выделенные классы практически можно рассматривать как подходы к моделированию объекта или решаемой задачи