Решение линейных уравнений с одной переменной. Конспект урока на тему "линейные уравнения с двумя переменными Общий вид линейного уравнения с двумя переменными

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

  • повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Пример: 5x+2y=10

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5 2+6 = 1

x = 4, y = -2.5 4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Утверждение 1.

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Утверждение 2.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Утверждение 3.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

Где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

Утверждение 4.

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  1. 9x – 18y = 5
  2. x + y= xy
  3. Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?

Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

Урок 2.

1) Организационный момент

2) Проверка домашнего задания

1) 9x – 18y = 5

5 не делится нацело на 9, в целых числах решений нет.

Методом подбора можно найти решение

Ответ: (0;0), (2;2)

3) Составим уравнение:

Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

Многие учащиеся, составив уравнение, не смогут его решить.

Ответ: мальчиков 4, девочек 6.

3) Изучение нового материала

Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

I. Метод рассмотрения остатков от деления.

Пример. Решить уравнение в целых числах 3x – 4y = 1.

Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

Ответ: где m Z.

Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

Пример: Решить уравнения в целых числах.

Пусть y = 4n, тогда 16 - 7y = 16 – 7 4n = 16 – 28n = 4*(4-7n) делится на 4.

y = 4n+1, тогда 16 – 7y = 16 – 7 (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

y = 4n+2, тогда 16 – 7y = 16 – 7 (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

y = 4n+3, тогда 16 – 7y = 16 – 7 (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

Следовательно, y = 4n, тогда

4x = 16 – 7 4n = 16 – 28n, x = 4 – 7n

Ответ: , где n Z.

II. Неопределенные уравнения 2-ой степени

Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

Пример: Решить уравнение в целых числах.

13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13 1 = 1 13 = (-1)(-13) = (-13)(-1)

Рассмотрим эти случаи

Ответ: (7;-3), (7;3), (-7;3), (-7;-3).

4) Домашнее задание.

Примеры. Решить уравнение в целых числах:

(x - y)(x + y)=4

2x = 4 2x = 5 2x = 5
x = 2 x = 5/2 x = 5/2
y = 0 не подходит не подходит
2x = -4 не подходит не подходит
x = -2
y = 0

Ответ: (-2;0), (2;0).

Ответы: (-10;9), (-5;3), (-2;-3), (-1;-9), (1;9), (2;3), (5;-3), (10;-9).

в)

Ответ: (2;-3), (-1;-1), (-4;0), (2;2), (-1;3), (-4;5).

Итоги. Чтозначит решить уравнение в целых числах?

Какие методы решения неопределенных уравнений вы знаете?

Приложение:

Упражнения для тренировки.

1) Решите в целых числах.

а) 8x + 12y = 32 x = 1 + 3n, y = 2 - 2n, n Z
б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z
в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z
г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z
д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z
е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z
ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z
з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z

2) Найти целые неотрицательные решения уравнения:

Решение:Z (2; -1)

Литература.

  1. Детская энциклопедия “Педагогика”, Москва, 1972 г.
  2. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  3. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  4. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  5. Алгебра 7, Макарычев Ю.Н., “Просвещение”.

Нам часто встречались уравнения вида ах + b = 0, где а, b - числа, х - переменная. Например, bх - 8 = 0, х + 4 = О, - 7х - 11 = 0 и т. д. Числа а, Ь (коэффициенты уравнения) могут быть любыми, исключает лишь случай, когда а = 0.

Уравнение ах + b = 0, где а , называют линейным уравнением с одной переменной х (или линейным уравнением с одним неизвестным х). Решить его, т. е. выразить х через а и b, мы с вами умеем:

Ранее мы отмечали, что довольно часто математической моделью реальной ситуации служит линейное уравнение с одной переменной или уравнение, которое после преобразований сводится к линейному. А теперь рассмотрим такую реальную ситуацию.

Из городов A и В, расстояние между которыми 500 км, навстречу друг другу вышли два поезда, каждый со своей постоянной скоростью. Известно, что первый поезд вышел на 2 ч раньше второго. Через 3 ч после выхода второго поезда они встретились. Чему равны скорости поездов?

Составим математическую модель задачи. Пусть х км/ч - скорость первого поезда, у км/ч - скорость второго поезда. Первый был в пути 5 ч и, значит, прошел путь bх км. Второй поезд был в пути 3 ч, т.е. прошел путь Зу км.

Их встреча произошла в пункте С. На рисунке 31 представлена геометрическая модель ситуации. На алгебраическом языке ее можно описать так:

5х + Зу = 500


или
5х + Зу - 500 = 0.

Эту математическую модель называют линейным уравнением с двумя переменными х, у.
Вообще,

ах + by + с = 0,

где а, b, с - числа, причем , - линейное уравнение с двумя переменными х и у (или с двумя неизвестными х и у).

Вернемся к уравнению 5х + Зу = 500. Замечаем, что если х = 40, у = 100, то 5 40 + 3 100 = 500 - верное равенство. Значит, ответ на вопрос задачи может быть таким: скорость первого поезда 40 км/ч, скорость второго поезда 100 км/ч. Пару чисел х = 40, у = 100 называют решением уравнения 5х + Зу = 500. Говорят также, что эта пара значений (х; у) удовлетворяет уравнению 5х + Зу = 500.

К сожалению, это решение не единственно (мы ведь все любим определенность, однозначность). В самом деле, возможен и такой вариант: х = 64, у = 60; действительно, 5 64 + 3 60 = 500 - верное равенство. И такой: х = 70, у = 50 (поскольку 5 70 + 3 50 = 500 - верное равенство).

А вот, скажем, пара чисел х = 80, у = 60 решением уравнения не является, поскольку при этих значениях верного равенства не получается:

Вообще, решением уравнения ах + by + с = 0 называют всякую пару чисел (х; у), которая удовлетворяет этому уравнению, т. е. обращает равенство с переменными ах + by + с = 0 в верное числовое равенство. Таких решений бесконечно много.

Замечание. Вернемся еще раз к уравнению 5х + Зу = 500, полученному в рассмотренной выше задаче. Среди бесконечного множества его решений имеются, например, и такие: х = 100, у = 0 (в самом деле, 5 100 + 3 0 = 500 - верное числовое равенство); х = 118, у = - 30 (так как 5 118 + 3 (-30) = 500 - верное числовое равенство). Однако, являясь решениями уравнения , эти пары не могут служить решениями данной задачи, ведь скорость поезда не может быть равной нулю (тогда он не едет, а стоит на месте); тем более скорость поезда не может быть отрицательной (тогда он едет не навстречу другому поезду, как сказано в условии задачи, а в противоположную сторону).

Пример 1. Изобразить решения линейного уравнения с двумя переменными х + у - 3 = 0 точками в координатной плоскости хОу.

Решение. Подберем несколько решений заданного уравнения, т. е. несколько пар чисел, которые удовлетворяют уравнению: (3; 0), (2; 1), (1; 2) (0; 3), (- 2; 5).

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

§ 1 Отбор корней уравнения при реальных ситуациях

Рассмотрим такую реальную ситуацию:

Мастер и ученик вместе изготовили на заказ 400 деталей. Причём мастер работал 3 дня, а ученик 2 дня. Сколько деталей изготовил каждый?

Составим алгебраическую модель данной ситуации. Пусть мастер изготавливает за 1 деньхдеталей. А ученик у деталей. Тогда мастер за 3 дня изготовит 3х деталей, а ученик изготовит за 2 дня 2у деталей. Вместе они изготовят 3х + 2удеталей. Так как по условию всего изготовлено 400 деталей, то получим уравнение:

Полученное уравнение называют линейным уравнением с двумя переменными. Здесь нам надо найти пару чисел х и у, при которых уравнение примет вид верного числового равенства. Заметим, что если х= 90, у = 65, то получим равенство:

3 ∙ 90 + 65 ∙ 2 = 400

Так как получено верное числовое равенство, то пара чисел 90 и 65 будет являться решением этого уравнения. Но найденное решение не единственно. Если х = 96 и у = 56, то получаем равенство:

96 ∙ 3 + 56 ∙ 2 = 400

Это тоже верное числовое равенство, а, значит, пара чисел 96 и 56 так же является решением этого уравнения. А вот пара чисел х= 73и у= 23 не будет являться решением этого уравнения. В самом деле, 3 ∙ 73 + 2 ∙ 23 = 400 даст нам неверное числовое равенство 265 = 400.Необходимо отметить, что если рассматривать уравнение применительно к данной реальной ситуации, то будут существовать пары чисел, которые, являясь решением данного уравнения, не будут являться решением задачи. Например, пара чисел:

х = 200 и y = -100

является решением уравнения, но ученик не может сделать -100 деталей, а поэтому такая пара чисел ответом на вопрос задачи быть не может. Таким образом, в каждой конкретной реальной ситуации необходимо разумно подходить к отбору корней уравнения.

Подведём первые итоги:

Уравнение вида ах + bу + с = 0, где а, b, с - любые числа, называют линейным уравнением с двумя переменными.

Решением линейного уравнения с двумя переменными называют пару чисел соответствующих х и у, при которых уравнение обращается в верное числовое равенство.

§ 2 График линейного уравнения

Сама запись пары (х;у) наталкивает нас на мысль о возможности изображения её в виде точки с координатами хи у на плоскости. А значит, мы можем получить геометрическую модель конкретной ситуации. Например, рассмотрим уравнение:

2х + у - 4 = 0

Подберём несколько пар чисел, которые будут являться решениями этого уравнения и построим точки с найденными координатами. Пусть это будут точки:

А(0; 4), В(2; 0), С(1; 2), D(-2; 8), Е(- 1; 6).

Заметим, что все точки лежат на одной прямой. Такую прямую называют графиком линейного уравнения с двумя переменными. Она является графической (или геометрической) моделью данного уравнения.

Если пара чисел (х;у) является решением уравнения

ах + ву + с = 0, то точка М(х;у) принадлежит графику уравнения. Можно сказать и наоборот: если точка М(х;у) принадлежат графику уравнения ах + ву + с = 0, то пара чисел (х;у) является решением этого уравнения.

Из курса геометрии мы знаем:

Для построения прямой необходимо 2 точки, поэтому для построения графика линейного уравнения с двумя переменными достаточно знать всего 2 пары решений. Но угадывание корней процедура далеко не всегда удобная, не рациональная. Можно действовать и по другому правилу. Поскольку абсцисса точки (переменная х) это независимая переменная, то можно придать ей любое удобное значение. Подставив это число в уравнение, мы найдём значение переменной у.

Например, пусть дано уравнение:

Пусть х = 0, тогда получим 0 - у + 1 = 0 или у = 1. Значит, если х = 0, то у = 1. Пара чисел (0;1) - решение этого уравнения. Зададим для переменной х ещё одно значение х = 2. Тогда получим 2 - у + 1 = 0 или у = 3. Пара чисел (2;3) также является решением этого уравнения. По двум найденным точкам уже можно построить график уравнения х - у + 1 =0.

Можно поступить и так: сначала придать некоторое конкретное значение переменной у, а уж потом вычислить значение х.

§ 3 Система уравнений

Найдите два натуральных числа, сумма которых 11, а разность 1.

Для решения этой задачи сначала составим математическую модель (а именно алгебраическую). Пусть первое число х, а второе - у. Тогда сумма чисел х + у = 11 и разность чисел х - у = 1. Так как в обоих уравнениях речь идёт об одних и тех же числах, то данные условия должны выполниться одновременно. Обычно в таких случаях используют специальную запись. Уравнения записывают одно под другим и объединяют фигурной скобкой.

Такую запись называют системой уравнений.

Теперь построим множества решений каждого уравнения, т.е. графики каждого из уравнений. Возьмём первое уравнение:

Если х =4, то у = 7. Если х = 9, то у = 2.

Через точки (4;7) и (9;2) проведём прямую.

Возьмём второе уравнение х - у = 1. Если х = 5, то у = 4. Если х = 7, то у = 6. Через точки (5;4) и (7;6) так же проведём прямую. Получили геометрическую модель задачи. Интересующая нас пара чисел (х;у) должна являться решением обоих уравнений. На рисунке мы видим единственную точку, которая лежит на обеих прямых, это - точка пересечения прямых.

Её координаты (6;5). Поэтому решением задачи будет: первое искомое число 6, второе 5.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/ [А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010

Инструкция

Если дана система из двух линейных уравнений, решайте ее следующим образом. Выберите одно из уравнений, в котором коэффициенты перед переменными поменьше и выразите одну из переменных, например, х. Затем подставьте это значение, содержащее у, во второе уравнение. В полученном уравнении будет лишь одна переменная у, перенесите все части с у в левую часть, а свободные – в правую. Найдите у и подставьте в любое из первоначальных уравнений, найдите х.

Решить систему из двух уравнений можно и другим способом. Умножьте одно из уравнений на число, чтобы коэффициент перед одной из переменных, например, перед х, был одинаков в обоих уравнениях. Затем вычтите одно из уравнений из другого (если правая часть не равна 0, не забудьте вычесть аналогично и правые части). Вы увидите, что переменная х исчезла, и осталась только одна переменная у. Решите полученное уравнение, и подставьте найденное значение у в любое из первоначальных равенств. Найдите х.

Третий способ решения системы двух линейных уравнений – графический. Начертите систему координат и изобразите графики двух прямых, уравнения которых указаны в вашей системе. Для этого подставляйте любые два значения х в уравнение и находите соответствующие у – это будут координаты точек, принадлежащих прямой. Удобнее всего находить пересечение с осями координат – достаточно подставить значения х=0 и у=0. Координаты точки пересечения этих двух линий и будут задачи.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, деревьев и т.д. – тогда значениями могут быть только целые числа. Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Постройте график прямой, соответствующий линейному уравнению. Посмотрите на график, возможно, на нем будет всего лишь несколько решений, удовлетворяющих всем условиям – например, целых и положительных чисел. Они и будут являться решениями вашего уравнения.

Источники:

  • как решить уравнение с одной переменной

Одной из основных задач математики является решение системы уравнений с несколькими неизвестными. Это очень практическая задача: есть несколько неизвестных параметров, на них накладывается несколько условий и требуется найти их наиболее оптимальную совокупность. Такие задачи являются обыденными в экономике, строительстве, проектировании сложных механических систем и вообще везде где требуется оптимизация затрат материальных и человеческих ресурсов. В связи с этим встает вопрос: а как же решать такие системы?

Инструкция

Математика дает нам два способа решения таких систем: графический и аналитический. Эти способы равнозначны, и нельзя сказать, что какой-то из них лучше или хуже. В каждой ситуации нужно в ходе оптимизации решения выбирать какой способ дает более простое решение. Но есть и некоторые типичные ситуации. Так, систему плоских уравнений, т. е. когда два графика имеют вид y=ax+b, проще решать графическим способом. Делается все очень просто: строятся две прямые: графики линейных функций, затем находится их точка пересечения. Координаты этой точки (абсцисса и ордината) и будут решением данного уравнения. Заметим также, что две прямые могут быть и параллельными. Тогда система уравнений не имеет решения, а функции называются линейно зависимыми.

Может случиться и обратная ситуация. Если нам нужно найти третью неизвестную, при двух линейно независимых уравнениях, тогда система будет недоопределена и иметь бесчисленное множество решений. В теории линейной алгебры доказывается, что система имеет единственное решение, тогда и только тогда, когда число уравнений совпадает с числом неизвестных.