Кольцевой резонатор. Выходные данные сборника

Кольцевой резонатор

Кольцево́й резона́тор - оптический резонатор , в котором свет распространяется по замкнутой траектории в одном направлении. Объемные кольцевые резонаторы состоят из трёх или более зеркал , ориентированных так, что свет последовательно отражается от каждого из них совершая полный оборот. Кольцевые резонаторы находят широкое применение в лазерных гироскопах и лазерах . В волоконных лазерах применяют специальные конструкции волоконных кольцевых резонаторов, обычно имеющих вид замкнутого в кольцо оптического волокна с WDM-ответвителями для ввода излучения накачки и вывода генерируемого излучения.

См. также

  • Резонатор Фабри - Перо

Литература

  • Звелто О. Принципы лазеров = Principles of Lasers. - 3-е изд. - М .: Мир, 1990. - 558 с. - ISBN 5-03-001053-Х
  • Agrawal G. P. Lightwave technology: components and devices. - Wiley-IEEE, 2004. - 427 p. - ISBN 9780471215738
  • Agrawal G. P. Applications of nonlinear fiber optics. - 2nd ed. - Academic Press, 2008. - Vol. 10. - 508 p. - (Optics and Photonis Series). - ISBN 9780123743022

Ссылки

  • Оптический резонатор - статья из Физической энциклопедии

Wikimedia Foundation . 2010 .

  • Кольцевое (электродепо)
  • Кольцевой ток

Смотреть что такое "Кольцевой резонатор" в других словарях:

    кольцевой резонатор - Оптический резонатор, в котором распространение электромагнитных колебаний происходит по замкнутому контуру. [ГОСТ 15093 90] Тематики лазерное оборудование EN ring resonator … Справочник технического переводчика

    кольцевой резонатор - žiedinis rezonatorius statusas T sritis fizika atitikmenys: angl. ring cavity; ring resonator vok. Ringresonator, m rus. кольцевой резонатор, m pranc. résonateur annulaire, m … Fizikos terminų žodynas

    кольцевой резонатор - Открытый резонатор, зеркала которого обеспечивают распространение электромагнитных волн по замкнутому контуру … Политехнический терминологический толковый словарь

    КОЛЬЦЕВОЙ ЛАЗЕР - см. в ст. Оптический резонатор. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 … Физическая энциклопедия

    Оптический резонатор - совокупность нескольких отражающих элементов, образующих открытый резонатор (в отличие от закрытых объёмных резонаторов, применяемых в диапазоне СВЧ), формирующих стоячую световую волну. Оптические резонаторы являются одним из основных элементов… … Википедия

    ОПТИЧЕСКИЙ РЕЗОНАТОР - устройство, в к ром могут возбуждаться стоячие или бегущие эл. магн. волны оптич. диапазона. О. р. представляет собой совокупность неск. зеркал и явл. открытым резонатором, в отличие от большинства объёмных резонаторов, применяемых в диапазоне… … Физическая энциклопедия

    Волоконный лазер - Цельноволоконный фемтосекундный эрбиевый лазер. Волоконный лазер лазер, активная среда и, возможно, резонатор которого являются элементами оптического … Википедия

    Лазерный гироскоп - Схема лазерного гироскопа. Здесь луч лазера циркулирует с помощью зеркал и постоянно усиливается лазером (а точнее квантовым усилителем). Замкнутый контур имеет ответвление через полупрозрачное зеркало (или, например, через щель) в датчик на базе … Википедия

    Лазер в форме восьмёрки - Волоконный лазер с кольцевым резонатором в виде восьмерки. In: излучение накачки. Out: выходное излучение. 1: активное волокно. 2: поляризатор. 3: оптический изолятор. 4 WDM ответвитель. 50:50 делитель 50/ … Википедия

    История изобретения лазеров - 1917 А. Эйнштейн представляет концепцию вынужденного излучения 1920 И. Франк и Ф. Райхе подтвердили существование метастабильных состояний в возбужденном состоянии 1927 Поль Дирак создает квантовую теорию вынужденного излучения 1928 Р. Ладенбург… … Википедия

Кольцевым называется резонатор, лазерный луч в котором, пройдя через всю систему, замыкается сам на себя. Кольцевой резонатор содержит три или более зеркал, расположенных под углом друг к другу. В качестве примера на рис. 2.13 приведена оптическая схема четырехзеркального резонатора.

Рис. 2.13. Оптическая схема четырехзеркального кольцевого резонатора (зеркала М 1 , М 2 и М 3 – плотные; зеркало М 4 – полупрозрачное)

Существуют кольцевые резонаторы как с плоским оптическим осевым контуром (планарные резонаторы), так и с неплоским оптическим осевым контуром (непланарные резонаторы). Главная особенность кольцевых резонаторов заключается в том, что их модами являются бегущие волны, благодаря чему их называют резонаторами бегущей волны. При этом все моды составляют две группы встречных волн, практически не взаимодействующих друг с другом.

Для описания кольцевых резонаторов необходимо учитывать их поляризационные свойства. Такой резонатор всегда содержит анизотропные элементы, приводящие к непрерывному изменению поляризации луча. Простейшим примером такого элемента является многослойное диэлектрическое зеркало при наклонном падении на него электромагнитных волн. Исследование поляризационных свойств лазерного луча позволяет

найти спектральные расстояния между модами различных поляризаций, встречными модами и др.

Расчет собственных колебаний планарных кольцевых резонаторов удобно провести методом ABCD -матрицы, которая представляет собой произведение матриц отдельных оптических элементов, через которые проходит свет (см. прил. 1). Резонансные частоты планарного кольцевого резонатора определяются соотношением

. (2.26)

Здесь а – сторона квадрата, R – радиус кривизны зеркал, образующих резонатор.

2. Спектр резонатора, образованного тремя одинаковыми зеркалами, расположенными в вершинах правильного треугольника, определяется соотношением

(2q − n ) +

n + 1 / 2

m + 1 / 2

где а –

сторона треугольника, R –

радиус кривизны зеркал.

Основной проблемой при применении кольцевых резонаторов в лазерной технике является уменьшение взаимодействия между встречными волнами. Для этого встречные волны по возможности разводят по частоте с помощью невзаимных анизотропных элементов, а их поляризацию стараются сделать ортогональной.

Теория непланарных резонаторов существенно сложнее и менее развита, чем теория планарных резонаторов, хотя их свойства с практической точки зрения очень привлекательны. В данной работе эта тема не рассматривается.

2.3.5. Эффективность преобразования энергии накачки в лазерных резонаторах

Одним из главных требований, предъявляемых к лазерному резонатору, является высокая эффективность преобразования энергии, запасенной в возбужденной АС , в энергию лазерного излучения. Для достижения этого необходимо выполнить следующие условия:

1) выбрать размеры и расположение зеркал резонатора так, чтобы весь объем АС был однородно заполнен лазерным излучением;

2) оптимизировать величины коэффициентов поглощения T и отражения R зеркал резонатора. Этими величинами обусловлены потери, возникающие внутри резонатора.

В идеализированном случае предельно возможный съем энергии с единичного объема АС обусловлен плотностью потока лазерного излучения (ρ, число фотонов см-2 ·с-1 ), фотоны в которых рождаются в объеме АС за единицу времени. Однако возникший в АС поток фотонов переходит

с верхнего уровня в нижележащие уровни двумя способами: спонтанным и вынужденным путем. В свою очередь, часть фотонов вынужденных переходов поглощается внутри резонатора (вредные потери), часть их выходит в виде полезного лазерного излучения. В соответствии с этими рассуждениями выражение для эффективности преобразования энергии можно представить в виде произведения двух сомножителей:

η = (1 − ρ1 )(1 − ρ2 ) ,

где ρ1 и ρ2 – плотность фотонов в спонтанном и вынужденном излучении.

Таким образом, оценка эффективности преобразования энергии для многомодовой генерации с учетом всех факторов и потерь излучения в резонаторе приводит к уравнению, зависящему от многих компонент и геометрических факторов резонатора, и имеет вид:

k ус 0 − σ0 − ln(1 / R ) / 2L

ln(1 / R )

ln(1 / R ) + 2σ

где k 0 ус – коэффициент усиления излучения в среде; σ0 –

коэффициент

вредных потерь в резонаторе; α = τ/А –

коэффициент нелинейности; τ –

время спонтанного распада возбужденного состояния; А –

коэффициент

пропорциональности между инверсной населенностью и k 0 ус ; L – длина резонатора; R – коэффициент отражения выходного зеркала резонатора; P нак . – мощность накачки.

Более сложной оказывается ситуация с расчетом эффективности лазера в случае одномодовой генерации, тем не менее уравнение (2.29) показывает способ оптимизации параметров резонатора, при котором уменьшается доля спонтанного излучения и одновременно увеличивается доля выходной мощности генерации лазера.

Кольцево́й резона́тор - оптический резонатор , в котором свет распространяется по замкнутой траектории в одном направлении. Объемные кольцевые резонаторы состоят из трёх или более зеркал , ориентированных так, что свет последовательно отражается от каждого из них совершая полный оборот. Кольцевые резонаторы находят широкое применение в лазерных гироскопах и лазерах . В волоконных лазерах применяют специальные конструкции волоконных кольцевых резонаторов, обычно имеющих вид замкнутого в кольцо оптического волокна с WDM-ответвителями для ввода излучения накачки и вывода генерируемого излучения.

См. также

Напишите отзыв о статье "Кольцевой резонатор"

Литература

  • Звелто О. Принципы лазеров = Principles of Lasers. - 3-е изд. - М .: Мир, 1990. - 558 с. - ISBN 5-03-001053-Х.
  • Agrawal G. P. Lightwave technology: components and devices. - Wiley-IEEE, 2004. - 427 p. - ISBN 9780471215738 .
  • Agrawal G. P. Applications of nonlinear fiber optics. - 2nd ed. - Academic Press, 2008. - Vol. 10. - 508 p. - (Optics and Photonis Series). - ISBN 9780123743022 .

Ссылки

  • - статья из Физической энциклопедии

Отрывок, характеризующий Кольцевой резонатор

– Да, хорошенький кошелек… Да… да… – сказал он и вдруг побледнел. – Посмотрите, юноша, – прибавил он.
Ростов взял в руки кошелек и посмотрел и на него, и на деньги, которые были в нем, и на Телянина. Поручик оглядывался кругом, по своей привычке и, казалось, вдруг стал очень весел.
– Коли будем в Вене, всё там оставлю, а теперь и девать некуда в этих дрянных городишках, – сказал он. – Ну, давайте, юноша, я пойду.
Ростов молчал.
– А вы что ж? тоже позавтракать? Порядочно кормят, – продолжал Телянин. – Давайте же.
Он протянул руку и взялся за кошелек. Ростов выпустил его. Телянин взял кошелек и стал опускать его в карман рейтуз, и брови его небрежно поднялись, а рот слегка раскрылся, как будто он говорил: «да, да, кладу в карман свой кошелек, и это очень просто, и никому до этого дела нет».
– Ну, что, юноша? – сказал он, вздохнув и из под приподнятых бровей взглянув в глаза Ростова. Какой то свет глаз с быстротою электрической искры перебежал из глаз Телянина в глаза Ростова и обратно, обратно и обратно, всё в одно мгновение.
– Подите сюда, – проговорил Ростов, хватая Телянина за руку. Он почти притащил его к окну. – Это деньги Денисова, вы их взяли… – прошептал он ему над ухом.
– Что?… Что?… Как вы смеете? Что?… – проговорил Телянин.
Но эти слова звучали жалобным, отчаянным криком и мольбой о прощении. Как только Ростов услыхал этот звук голоса, с души его свалился огромный камень сомнения. Он почувствовал радость и в то же мгновение ему стало жалко несчастного, стоявшего перед ним человека; но надо было до конца довести начатое дело.
– Здесь люди Бог знает что могут подумать, – бормотал Телянин, схватывая фуражку и направляясь в небольшую пустую комнату, – надо объясниться…
– Я это знаю, и я это докажу, – сказал Ростов.
– Я…
Испуганное, бледное лицо Телянина начало дрожать всеми мускулами; глаза всё так же бегали, но где то внизу, не поднимаясь до лица Ростова, и послышались всхлипыванья.
– Граф!… не губите молодого человека… вот эти несчастные деньги, возьмите их… – Он бросил их на стол. – У меня отец старик, мать!…
Ростов взял деньги, избегая взгляда Телянина, и, не говоря ни слова, пошел из комнаты. Но у двери он остановился и вернулся назад. – Боже мой, – сказал он со слезами на глазах, – как вы могли это сделать?

ОПТИЧЕСКИЙ РЕЗОНАТОР - совокупность неск. отражающих элементов, образующих открытый резонатор (в отличие от закрытых объёмных резонаторов , применяемых в диапазоне СВЧ). Для длин волн < 0,1 см использование закрытых резонаторов, имеющих размеры d ~ затруднительно из-за малости d и больших потерь энергии в стенках. Использование же объёмных резонаторов с d > также невозможно из-за возбуждения в них большого числа собств. колебаний, близких по частоте, в результате чего резонансные линии перекрываются и резонансные свойства практически исчезают. В О. р. отражающие элементы не образуют замкнутой полости, поэтому большая часть его собств. колебаний сильно затухает и лишь малая часть их затухает слабо. В результате спектр образовавшегося О. р. сильно разрежен.
О. р. - резонансная система лазера ,определяющая спектральный и модовый состав лазерного излучения, а также его направленность и поляризацию. От О. р. зависит заполненность активной среды лазера полем излучения и, следовательно, снимаемая с неё мощность излучения и кпд лазера.
Простейшим О. р. является интерферометр Фабри - Перо , состоящий из двух плоских параллельных зеркал. Если между зеркалами, расположенными на расстоянии d друг от друга, нормально к ним распространяется плоская волна, то в результате отражения её от зеркал в пространстве между ними образуются стоячие волны (собств. колебания). Условие их образования где q - число полуволн, укладывающихся между зеркалами, наз. продольным индексом колебания (обычно q ~ 10 4 - 10 6). Собств. частоты О. р. образуют арифметич. прогрессию с разностью c/2d (эквидистантный спектр). В действительности из-за дифракции на краях зеркал поле колебаний зависит и от поперечных координат, а колебания характеризуются также поперечными индексами т , п , определяющими число обращений поля в 0 при изменении поперечных координат. Чем больше т и п , тем выше затухание колебаний, обусловленное излучением в пространство (вследствие дифракции света на краях зеркал). Моды с т = п = 0 наз. продольными, остальные - поперечными.
Т. к. коэф. затухания колебания растёт с увеличением т и п быстрее, чем частотный интервал между соседними колебаниями, то резонансные кривые, отвечающие большим т и п , перекрываются и соответствующие колебания не проявляются. Коэф. затухания зависит также от числа N зон Френеля, видимых на зеркале диам. R из центра др. зеркала, находящегося от первого на расстоянии d: (см. Френеля зоны) . При N ~ 1 остаётся 1 - 2 колебания, сопутствующих осн. колебанию (q = 1).

Двухзеркальные резонаторы . О. р. с плоскими зеркалами чувствительны к деформациям и перекосам зеркал, что ограничивает их применение. Этого недостатка лишены О. р. со сферич. зеркалами (рис. 1), в к-рых лучи, неоднократно отражаясь от вогнутых зеркал, не выходят за пределы огибающей поверхности - каустики . Поскольку волновое поле быстро убывает вне каустики, излучение из сферич. О. р. с каустикой гораздо меньше, чем излучение из плоского О. р.

Рис. 1. Двухзеркальный резонатор.

Разрежение спектра в этом случае реализуется благодаря тому, что размеры каустики растут с ростом т и n . Для колебаний с большими т и п каустика оказывается расположенной вблизи края зеркал или вовсе не формируется. Сферич. О. р. с каустикой наз. устойчивыми, т. к. параксиальный луч при отражении не уходит из приосевой области (рис. 2,а ). Устойчивые О. р. нечувствительны к небольшим смещениям и перекосам зеркал, они применяются с активными средами, обладающими небольшим усилением (10% на один проход). Для сред с большим усилением используются неустойчивые О. р., в к-рых каустика образоваться не может; луч, проходящий вблизи оси резонатора под малым углом к ней, после отражений неограниченно удаляется от оси. На рис. 2(б )дана диаграмма устойчивости О. р. при разл. соотношениях между радиусами R 1 и R 2 зеркал и расстоянием d между ними. Незаштрихованные области соответствуют наличию каустик, заштрихованные - их отсутствию. Точки, соответствующие резонатору с плоскими (П) и концентрическими (К) зеркалами, лежат на границе заштрихованных областей. На границе между устойчивыми и неустойчивыми О. р. расположен также конфокальный О. р. (R 1 = R 2 = d) . Из устойчивых О. р. наиб. часто используется полуконфокальный (R 1 = х R 2 = 2d ), из неустойчивых - телескопический О. р. (R 1 + R 2 = 2d ). Потери на излучение в неустойчивых О. р. для колебаний высших типов значительно больше, чем для осн. колебания. Это позволяет добиться одномодовой генерации лазера и связанной с ней высокой направленности излучения.

Рис. 2. Образование каустики (а )и диаграмма устойчивости двухзеркальных резонаторов (б ): знаком плюс отмечены области устойчивости; минусом - области неустойчивости; сплошные линии - границы этих областей; П - резонатор с плоскими зеркалами; Конф. - конфокальный резонатор; К - концентрический резонатор; пунктир - линия телескопических резонаторов.

Теория. Распределение электрич. поля Е устойчивого О. р. в плоскости, перпендикулярной оси О. р. (z ), описывается выражением

Здесь Е 0 - коэф., определяющий амплитуду поля; Н т,п - полиномы Эрмита (см. Ортогональные полиномы) т -й и n -й степеней: Н 0 (х) = 1, Н 1 (x) = 2х, Н 2 (х) = 4x 2 - 2, Н 3 (х) = 8х 3 - 12x ; W - поперечный радиус продольной моды (на расстоянии от оси О. р., равном W , плотность энергии продольной моды уменьшается в е раз). Зависимость W(z )имеет вид

где а z отсчитывается от т. н. перетяжки продольной моды, т. е. от той точки на оси резонатора, где её радиус имеет наим. значение, равное W 0 (рис. 2,а ). Расстояние от перетяжки до зеркала R 1

радиус продольной моды в перетяжке

Частотный спектр двухзеркального О. р. задаётся условием

Распределение поля на зеркале показано на рис. 3. Т. к. частотный спектр двухзеркального О. р. вырожден (зависит лишь от суммы т + n , но не от каждого из индексов в отдельности), то Е(х,у )может отличаться от (1). Конкретный вид распределений зависит от слабых возмущающих действий со стороны диафрагм или др. объектов в области, занимаемой пучком. В частности, при осевой симметрии возможны распределения полей (рис. 4), описываемые в цилиндрич. координатах (r, , z )выражением

Здесь l, p - индексы колебания, определяющие число обращений поля в 0 при изменении r иW(z) - радиус продольной моды; - обобщённый полином Лагерра:

Спектр О. р. при осевой симметрии определяется соотношением (2), где (т + п + 1) следует заменить на ( + l+ 1).

Рис. 3. Распределение поля на зеркале при прямоугольной симметрии.

Рис. 4. Распределение поля на зеркале при осевой симметрии; * соответствует распределению поля при сложении двух ортогонально поляризованных мод.

Составной резонатор. Кроме зеркал О. р. часто содержит т. н. активные элементы (пластинки, линзы и др.). Составной О. р. может работать в двух режимах в зависимости от того, используется или теряется излучение, отражённое от промежуточных поверхностей. Если отражённое излучение используется, то О. р. наз. согласованным. Каждая часть согласованного О. р., заключённая между двумя соседними поверхностями раздела, может рассматриваться как отд. резонатор, причём поперечные моды этих резонаторов подбирают так, чтобы они совпадали на границах раздела. Условие согласования (рис. 5) имеет вид

Согласованный О. р. обладает неэквидистантным спектром и может быть использован для разрежения продольного спектра О. р. (см. ниже).
Важной проблемой в случае составного О. р. является эфф. заполнение активной среды лазера полем выбранной моды. Если составной О. р. обладает осью или плоскостью симметрии, то продольная мода (как и у двухзеркального О, р.) является гауссовым пучком (см. Квазиоптика ).Его прохождение через оптич. элементы описывается матрицами этих элементов (см. Матричные методы в оптике), а прохождение через О. р. описывается матрицей, являющейся произведением матриц составляющих его оптич. элементов. При этом комплексный параметр гауссова пучка q определяется ур-нием

Cq 2 + (D - A)q - B = 0 .

Коэф. А, В, С, D образуют матрицу О. р. Это ур-ние, а также соотношения R = -l , = [kIm (1 /q )] -1 позволяют определить поперечный радпус пучка и радиус кривизны волнового фронта R в любом сечении резонатора.

Селекция продольных мод . Для разрежения (селекции) продольных мод, имеющих одинаковое поперечное распределение поля, но отличающихся частотой, используются резонаторы, содержащие дисперсионные элементы (призмы, дифракц. решётки, интерферометры и др.). В частности, в качестве дисперсионного элемента применяют дополнит. О. р., связанные с основным и образующие т. н. эквивалентное зеркало, коэф. отражения к-рого r зависит от частоты v . Для удаления из спектра одной из продольных мод наиб. пригоден линейный трёхзеркальный О. р. (рис. 6,а ), для выделения в спектре одной продольной моды - резонатор Фокса - Смита (рис. 6,б ) и Т-образный (рис. 6,в ). В нек-рых случаях удобен О. р. Майкельсона (рис. 6,г) .

Рис. 6. Различные типы связанных резонаторов (I) и зависимость коэффициента отражения эквивалентного зеркалаот частоты v (II).

В лазерах на красителях применяется комбинация дифракц. решётки и интерферометра Фабри - Перо (рис. 7). При этом интерферометр выделяет одну продольную моду, а решётка предотвращает генерацию на др. порядках интерферометра. Линзы Л 1 и Л 2 , образующие т. н. телескоп, согласуют узкий пучок, проходящий через активную среду А, с широким пучком, попадающим на интерферометр и решётку.Активная среда в таком О. р. играет также роль диафрагмы, выделяющей осн. поперечную моду. Такие О. р. позволили создать перестраиваемые в широком диапазоне одночастотные лазеры на красителях .

Рис. 7. Резонатор, содержащий дисперсионные элементы (используемый в лазерах на красителях). А - кювета с активной средой; З - непрозрачное или частично прозрачное зеркало; И - интерферометр Фабри - Перо; Д - дифракционная решётка.

Селекция поперечных мод основана на различии в распределении полей поперечных мод с разными т и п . Т. к. обычно требуется выделить осн. моду, к-рая имеет мин. угл, расходимость, гауссово распределение и мин. протяжённость в поперечном направлении, то применяется диафрагмирование пучка внутри О. р. Радиус диафрагмы ориентировочно должен быть равен поперечному радиусу моды, следующей за основной. При этом потери всех мод, кроме основной, сильно увеличиваются.
При селекции поперечных мод необходимо, чтобы оставшаяся единств. мода эффективно заполняла активную среду. Поэтому важны границы зон устойчивости (рис. 2,6 ), где поперечные размеры мод увеличиваются: 1) радиус моды увеличивается во всём объёме, если расстояние d между зеркалами постоянно, а радиусы крпвизны зеркал R l и R 2 (при этом сильно увеличивается чувствительность резонатора к разъюстировкам); 2) радиус моды увеличивается на 1-м зеркале и уменьшается на 2-м, если dR 1 (R 2 >R 1 ); 3) радиус моды увеличивается на 2-м зеркале и уменьшается на 1-м, если d R 2 ; 4) радиус моды увеличивается на обоих зеркалах и уменьшается в области их центров кривизны, если d (R 1 + R 2).
При необходимости выделения к--л. высшей моды на нулевой линии распределения поля этой моды помещают тонкую рассеивающую нить, к-рая не оказывает влияния на избранную моду и подавляет др. моды, не обращающиеся в 0 на этой линии.
Резонаторы с анизотропными элементами. Поляризация лазерного излучения определяется т. н. анизотропными элементами, находящимися в О. р. Такими элементами являются двулучепреломляющие пластины, поляризаторы ,вещества, обладающие оптической активностью , и др., а также пластины Брюстера и диэлектрич. зеркала при наклонном падении на них излучения. Определение поляризации производится матричным методом Джонса. При этом поляризац. матрица всего О. р. является произведением матриц входящих в него элементов, расположенных в том порядке, в к-ром через эти элементы проходит излучение начиная с того места, где требуется определить состояние поляризации. Собств. векторы поляризац. матрицы являются векторами Джонса Е (Е х,Е у ) полей, генерируемых в О. р. Степень поляризации е и направление гл. оси эллипса поляризации а определяются соотношениями

где R = |Е х | / |Е у |,= arcig(E y /E x) .

Модули собств. значений матрицы Джонса определяют потери О. р., обусловленные поляризаторами, а фазы собств. значений - поляризац. поправки к частотам соответствующих мод. Подбирая анизотропные элементы, можно добиться требуемого состояния поляризации. Учитывая, что обычно анизотропные элементы обладают заметной дисперсией, можно использовать их также для разрежения продольного спектра.

Кольцевые резонаторы . Спектр собств. частот кольцевого О. р., образованного тремя одинаковыми сферич. зеркалами радиуса R , расположенными в вершинах равностороннего треугольника со стороной а (рис. 8), определяется соотношением

Рис. 8. Кольцевые оптические резонаторы.

Перетяжки мод находятся на серединах сторон треугольника; поперечные протяжённости мод в области перетяжки в плоскости осевого контура равны:

Если у резонатора лишь одно зеркало сферическое, а два плоских (рис. 8,6) , то его спектр определяется соотношением

Поперечные протяжённости мод в области перетяжки, к-рая находится на середине стороны треугольника, противолежащей сферич. зеркалу в плоскости резонатора, равны:

Оптич. система, образующая О. р. с неплоским контуром, напр. система из 4 зеркал, расположенных в вершинах тетраэдра (рис. 8,в ), характеризуется тем, что изображение того или иного предмета, построенное с помощью этой системы, повёрнуто относительно самого предмета на нек-рый свойственный этой системе угол. Для тетраэдра этот угол равен где - углы между соседними плоскостями падения лучей на зеркала (грани тетраэдра), к-рые отсчитываются так, что тетраэдр лежит внутри угла. Продольной модой О. р. с неплоским контуром является пучок, у к-рого гл. оси эллиптич. амплитудного распределения развёрнуты на нек-рый угол относительно гл. линий кривизны волнового фронта. Благодаря этому амплитудное распределение при распространении пучка в свободном пространстве испытывает поворот, к-рый компенсирует поворот, обусловленный объёмным расположением зеркал. Кольцевые О. р. с неплоским контуром применяются, напр., в лазерных гироскопах . Они позволяют, в частности, избавиться от анизотропии, свойственной кольцевым О. р. с плоским контуром.

Неустойчивые резонаторы обладают высокими потерями на излучение во внеш. пространство (см. выше). Потери возрастают с увеличением т и п , благодаря этому неустойчивые О. р. обеспечивают одномодовую (по т и п )генерацию. Достоинством неустойчивых О. р. является большая поперечная протяжённость осн. моды, вследствие чего они могут быть использованы с активными средами большого поперечного сечения. Вывод энергии из неустойчивого О. р., как правило, осуществляется не сквозь зеркала, как в устойчивых О. р., а за краями одного из зеркал. В неустойчивых О. р. существенную (отрицат.) роль играет волна, отражённая от края зеркала и сходящаяся к оси О. р. Для уменьшения такого отражения применяют сглаживание края зеркала, к-рому придаётся звездообразная форма, скругляются края и т. п.
Осн. мода неустойчивого О. р. образована двумя сферич. волнами, распространяющимися между зеркалами навстречу друг другу. В случае телескопич. неустойчивого О. р. (рис. 9) одна из волн может быть плоской. Центр сферич. волны лежит на расстоянии х = R 2 /2 за выпуклым зеркалом с радиусом кривизны R 2 . Вогнутое зеркало должно обладать при этом радиусом кривизны |R 1 | = R 2 + 2d (R l < 0). При достаточно больших поперечных размерах 1-го зеркала пучок излучения кольцевой формы выводится в сторону выпуклого зеркала с волновым фронтом, близким к плоскому.
Неустойчивые О. р. с вращением поля образуются де-фокусирующей системой зеркал, расположенных в вершинах неплоского многоугольника. Однако наиб. важны О. р., образуемые двумя двугранными уголковыми отражателями (рис. 10), рёбра к-рых развёрнуты друг относительно друга на угол. Если одна или неск. граней отражателей являются выпуклыми, то О. р. неустойчив.

Рис. 9. Неустойчивый телескопический резонатор.

Рис. 10. Линейный резонатор с вращением поля, образованный уголковыми отражателями.

Поле при полном обходе такого резонатора испытывает поворот на угол Достоинством неустойчивого О. р. с вращением поля является возможность вывода излучения в виде не кольцевого пучка, как в обычном неустойчивом О. р., а односвязного компактного пучка (рис. 11).

Рис. 11. Вывод энергии в виде компактного односвязного пучка из неустойчивого резонатора с вращением поля наАС - ребро уголкового отражателя зеркала, вблизи которого выводится пучок излучения (заштрихован), НН" - обрез того же зеркала, GG" - ребро второго уголкового отражателя.

Лит.: Вайнштейн Л. А., Открытые резонаторы и открытые волноводы, М., 1966; Ананьев Ю. А., Оптические резонаторы и проблема расходимости лазерного излучения, М., 1979; Справочник по лазерам, пер. с англ., под ред. А. М Прохорова, т. 2, М., 1978, гл. 22, 23; Карлов Н. В., Лекции по квантовой электронике, 2 изд., М., 1988.

Выходные данные сборника:

МОДЕЛИРОВАНИЕ РЕЗОНАНСНЫХ ИНТЕГРАЛЬНЫХ УСТРОЙСТВ

Андросик Андрей Борисович

Воробьев Сергей Андреевич

канд. техн. наук, доцент МГОУ, г. Москва

Мировицкая Светлана Дмитриевна

канд. техн. наук, доцент МГОУ, г. Москва

Проведено исследование одиночной резонансной структуры, двойного кольцевого резонатора, а также тройного кольцевых резонаторов. В случае тройной резонансной структуры рассмотрено вертикальное и последовательное расположение колец. Рассмотрены результаты модельных исследований для этих типов резонаторов.

Ключевые слова: кольцевой микрорезонатор, интегральная фотоника, планарные структуры, спектр частот .

Важной разновидностью волноводных структур интегральной фотоники являются резонансные структуры – кольцевые микрорезонаторы . В последние годы они представляют все больший интерес для исследователей в области волноводной и интегральной оптики. Резонансные структуры являются потенциальными кандидатами для использования в таких областях применения интегральной фотоники как фильтрация волн; маршрутизация; переключение; модуляция; конвертирование, мультиплексирование и демультиплексирование оптического излучения . Для повышения качества выполняемых функций целесообразно использовать изготовление резонансных структур в виде множественных компонент. Множественные резонансные фотонные структуры обеспечивают улучшение основных оптических параметров, таких как свободный спектр частот, полную ширину половины максимума, добротность, чувствительность и др.

Множественные резонансные планарные структуры интегральной фотоники разработаны на базе нового перспективного явления, управления излучением, заключенного в микронные пленки прозрачного материала . Правильный выбор подложки, пленки и конфигурации волновода позволяет выполнить широкий спектр оптических преобразований излучения. Благодаря миниатюрным размерам достигается высокая плотность оптических компонентов в определенном месте, в отличие от традиционной объемной оптики. Таким образом, множественные резонансные структуры являются представителями нового поколения оптико-электронных систем, в которых оптические волноводы и световодные системы заменены на волноводные оптические элементы. Компьютерное моделирование этой новой группы элементов позволяет создать и изготовить принципиально новый класс оптических фотонных изделий .

Все многообразие конфигураций кольцевых микрорезонаторов можно классифицировать по двум параметрам: по форме резонатора (диск, кольцо, трасса или эллипс); по схеме взаимосвязи т.е. по схеме передачи энергии между волноводом и резонатором (вертикальные и боковые). В схеме боковой связи резонатор и волновод изготавливаются на одном уровне из одинакового материала; при этом взаимосвязь контролируется только за счет расстояния между волноводом и резонатором. В вертикальных схемах взаимосвязь контролируется как в вертикальном, так и в боковом положении. Кроме того, вертикальные и боковые конфигурации отличаются технологиями изготовления (SW - одномодовый волновод, MR – микрорезонатор).

В кольцевых резонаторах возбуждается несколько мод, распространяющихся по кольцу. Дисковые резонаторы позволяют поддерживать одномодовый режим излучения; при этом облегчается контроль за поведением излучения и характеристиками резонатора. Важной характеристикой волноводов является коэффициент связи. В дисковых и кольцевых резонаторах область связи ограничена, а трековые являются альтернативой для увеличения этой области. Микрорезонаторы с двумя волноводами позволяет выполнять дополнительную селекцию излучения за счет второго резонанса. Основные типы резонансных планарных структур приведены на рис.1.

Синтез кольцевых резонаторных фильтров, соединённых в ряды или последовательные линии является актуальной задачей волноводной фотоники . Его целью является получение оптимальных характеристик фильтрации, мультиплексирования, переключения и др. К основным характеристикам относятся свободный спектр частот (расстояние между двумя последовательными резонансными пиками в порту понижения), полная ширина половины максимума (ширина сигнала в половине максимального значения пика нормированной интенсивности), добротность, чувствительность (однородная и поверхностная), предел чувствительности, отношение максимума/минимума сигнала.

Оптимальное взаимодействие между всеми связанными резонаторами позволяет обеспечить требуемый отклик фильтра . Использование двойных и кратно соединенных кольцевых резонаторов дают возможность для реализации характеристик различных типов фильтров (рис.2).

Важным параметром при создании фильтров или датчиков на основе микрорезонаторных структур является свободный спектр частот (FSR) – расстояние между двумя последовательными пиками в порту понижения в масштабе длин волн. Этот параметр определяет селективность датчика. Таким образом, если две последовательные длины волны резонирования очень близки друг к другу, то становится затруднительно дифференцировать их между собой. Следовательно, чем больше свободный спектр частот, тем лучше рабочие характеристики микрорезонатора. Математически этот параметр выражается как:

,

где n g - групповой индекс; n g =n-l(dn/dl); l - длина волны; L=pR T .

Использование группового коэффициента преломления позволяет повысить точность измерений. Как видно из формулы (1) свободный спектр частот обратно пропорционален размеру резонатора, т. е. для достижения большого значения FSR следует минимизировать длину резонатора.

Максимальная передача t max - величина отброшенного сигнала на резонансе. В асимметричном случае она имеет вид:

Минимальное отражение является мощностью сигнала, оставленной во входном волноводе на резонансе.

Отношение исчезновения - отношение питания в порту передачи на резонансе и от резонанса. Например, если изогнутый волновод используется в качестве фильтра добавления-разложения, важно, чтобы сигнал на резонансе был извлечен полностью из входного волновода для минимизации перекрестных помех.

В асимметричном случае можно записать:

Изящество, Q-фактор. Изящество, добротность (Q-фактор), резонансная ширина, пропускная способность – это условия, которые, главным образом, связаны с полной шириной в половине максимума (FWHM) передачи. При низких значениях FWHM величины чувствительности и добротности повышаются. Последнее особенно важно для датчиков. FWHM понижается при низких коэффициенте связи и длине волны, а также при увеличении длины резонатора L. Резонансная ширина, или пропускная способность определяются как FWHM резонанса изогнутого волновода.

Изящество - отношение FSR к пропускной способности, является безразмерной величиной. Формула для FWHM в угловом масштабе может быть записана следующим образом:

Изящество F тесно связано с пропускной способностью и определено как отношение FSR и пропускной способности:

,

Очень важно соблюдать равновесие между FSR , который должен быть идеально высоким и FWHM, который должен быть идеально низким для обеспечения возможности дифференциации между смежным резонансным пиком и переходом на нижний уровень рабочего резонансного пика. Следовательно, чем выше значение F, тем лучше характеристики чувствительности и селективности. Из формулы (8) можно заметить, что F зависит от внутренних потерь и от связи, т.е. внешних потерь резонатора. Чем выше сумма общих потерь, тем ниже F резонатора. Почти всегда выгодно уменьшать и внутренние, и внешние потери для получения более высокого значения F. Однако, внешние потери, обусловленные связью, являются неизбежными и не могут быть слишком малы для резонатора, работающего как оптический фильтр. В случае, когда внешние потери меньше, чем внутренние, вся переходная мощность будет потеряна в резонаторе. Вследствие таких связей кольцевой резонатор должен использовать строго наведенный световод для минимизации радиусных потерь на изгибе волновода с очень малым радиусом.

Другой тесно связанный параметр – добротность (Q-фактор), определяемый как отношение длины волны резонанса (пика) к FWHM пика:

,

Значение добротности имеет большое значение для датчиков. Чем выше значение добротности, тем лучше сенсорные параметры датчиков, использующих резонансный метод сдвига длины волны. Низкие значения добротности необходимы при реализации метода изменения интенсивности. Для достижения высокого значения добротности, связь должна быть очень низкой, потери минимизированы, FWHM – низкий, а радиусы – большие. Добротность и изящество связаны между собой следующим образом:

,

С практической точки зрения Q-фактор интересен, поскольку он характеризует непосредственную абсолютную ширины пика. Добротность связана с физическим размером резонатора, поэтому при сравнении различных резонаторов удобнее использовать параметр изящества.

Усиление поля. Одна из интересных функций кольцевого резонатора - высокая полевая интенсивность, которая создана в кольцевом резонаторе на резонансе. Усиление поля FE, является отношением амплитуды поля в кольце к амплитуде в волноводе входной шины:

,

Так как поле в кольце не одинаковое, усиление поля обычно выбирается сразу после входного разветвителя. Для хорошего кольца потеря очень низка, и коэффициент связи обычно не столь высок, таким образом, поле в кольце предполагается практически постоянным.

Внутренне резонансные вносимые потери. Это потери, которые испытывает сигнал в порту при передаче в кольцо. Требуется, чтобы эти потери были как можно меньше, тогда передача от резонансного сигнала будет без помех.

Форма строки (форм-фактор). Форма импульса для одного микро кольцевого резонатора часто моделируется функцией Лоренца, имеющей вид:

,

Форма импульса Лоренца является приближением первого порядка, которое является достаточно удобным для резонаторов с малыми потерями.

Схема канала, используемого в качестве фильтра, приведена на рис.3. На первом этапе осуществляется исследование распределения электромагнитных полей и переходной характеристики системы оптической селекции, представляющей собой два планарных волновода, связанных через кольцевой резонатор . Если входной сигнал содержит длину волны несущей, являющейся резонансной для кольцевого элемента, она ответвится в выходной волновод. Отношения интенсивностей прошедшего и ответвленного сигналов к входной интенсивности на разных длинах волн (коэффициент передачи) и зависимость этого отношения от времени определяют важнейшие свойства селектирующего элемента.

Рисунок 3. Геометрические особенности поперечного сечения моделируемой волноводной системы

Расстояние между кольцевым резонатором и волноводами (оно принимается одинаковым для входного и выходного волноводов) должно быть достаточно мало, чтобы каждый из волноведущих элементов находился в поле вытекающей волны другого. Например, при распространении оптического сигнала по входному волноводу (если его вытекающие волны перекрываются с волнами кольцевого резонатора) часть энергии, переносимая вытекающей волной, переходит в волну, ограниченную резонатором. Количество энергии, ответвленной в резонатор, зависит от расстояния между волноведущими элементами и длины участка эффективного обмена электромагнитными полями. Константы распространения и показатели преломления материалов также влияют на степень их связанности.

Модель кругового микрорезонатора, локально увеличивающего мощность света для определенных длин волн, представлена на рис.4. Эта функциональная возможность объясняется следующим образом. Резонатор и волновод находятся в непосредственной близости друг от друга, при этом часть поступающей энергии переходит в резонатор. Такой переход известен как направленная связь . В микрорезонаторе часть этой энергии направляется вдоль окружности резонатора и после совершения полного витка интерферирует с входящим полем волновода. На резонансных частотах, когда оптическая длина пройденного пути многократна эффективной длине волны, интерференция в резонаторе конструктивна. Эта конструктивная интерференция может привести к усилению электромагнитного поля и соответственно к увеличению мощности в резонаторе. В этом одиночном круговом микрорезонаторе длина окружности кольца - L(L=2nR; радиус- R) ,коэффициент связи - k. Коэффициент интенсивности затухания кольца a. Волновое число равно k n .

Рисунок 4. Одиночный круговой резонатор

Исследование поведения мощности между резонатором и диэлектрическим волноводом приведено в . Предложенная модель показывает связь между полями резонатора и волновода. Электрическая и магнитная составляющая поля в резонаторе является суммой отдельных амплитуд полей распространяющихся мод.

Соотношения прошедшего и отклоненного электрических полей можно записать следующим образом:

где k n =(2pn eff)/l и g обозначает коэффициент потерь интенсивности направленного ответвителя и n eff – эффективный показатель преломления.

Используя эти уравнения, можно вычислить отношение полей E t /E i:

Целесообразно ввести следующие параметры:

Соотношение интенсивности для выходного порта принимает вид:

Спектр передачи одиночного кольцевого резонатора представлен на рис.5; максимум и минимум передаточной характеристики вычислялся с использованием зависимостей:

Полная ширина на половине максимума (FWHM или 3 дБ ширина полосы)

и параметр изящества F резонатора имеют вид:

Параметр F является измерительной характеристикой фильтра. Точка резонанса T min в уравнении (18) определяется следующим образом:

Одиночный круговой резонатор с двумя связанными волноводами для входа и выхода сигнала показан на рис.6.

В приведенных ниже расчетах не учитываются потери связи, т. е. рассматривается предположение (D 2 =1).

Отклик фильтра одиночного кольцевого резонатора с двумя связанными волноводами и коэффициентами связи k 1 =k 2 =0.2 в обоих симметричных связанных волноводах показан на рис.6.Предполагается, что потери внутри кольца полностью компенсированы (a=0).

Максимум и минимум передачи вычисляется следующим образом. Для пропускного порта

Для результирующего порта

Результирующее отношение вход/выход имеет следующий вид

Интенсивность излучения на выходе I t 1 пропускного порта равна нулю в резонансе (k n L=2mp); это показывает, что резонансная длина волны полностью выводится резонатором, для одинаковых симметричных сонаправленных ответвителей k 1 =k 2 при a=0. Значение a=0 достижимо только внедрением селективного усилителя внутрь кольцевого резонатора, для компенсации волноводных потерь. Значение коэффициента затуханияинтенсивности a является постоянной величиной в полностью пассивном кольцевом резонаторе. Возможность достижения минимума интенсивности (I t 1 /I i 1 =0) при резонансе передаточной функции на выходе I t 1 пропускного порта осуществляется получением корректного отношения коэффициентов связи k 1 , k 2 и коэффициента ослабления интенсивности a.

Рисунок 6. Одиночный и двойной кольцевые резонаторы

Двойной кольцевой резонатор. Схема двойного кольцевого резонатора показана на рис.6 Входное поле E i 1 связывается с портом 1. Выходное поле получено в пропускном E t 1 или в результирующем порте E t 2 . Другое входное поле E i 2 можно внедрить в порт добавления устройства.

Вычислительные модели, описанные выше, хорошо подходят для устройств с однородным показателем преломления резонатора. При моделировании следует учесть условия формирования активных секций, изменения показателя преломления в одной части резонатора за счет локального нагрева, потери при переходе от активной зоны к пассивной, на границе прямого волновода и изогнутой части волновода, потери связи и материальные потери для каждого сегмента. Для выполнения расчетов этих специфических деталей, следует разделить всю конфигурацию кольцевого резонатора на разные сегменты (рис.6) для двойного кругового резонатора. Электрическое поле электромагнитной волны, распространяющейся в каждом сегменте, описывается следующим уравнением:

где Е А - амплитуда электрического поля, a segment - коэффициент затухания интенсивности.

Двойной кольцевой резонатор дает возможность распространения свободного спектра частот к меньшему общему таких частот одиночных кольцевых резонаторов. Это достигается путем выбора различных радиусов в двойном кольцевом резонаторе. В случае разных радиусов, излучение, проходящее через двойной кольцевой резонатор, запускается из порта убывания, в случае удовлетворения резонансных условий для двух одиночных кольцевых резонаторов. Свободный спектр частот двойного кольцевого резонатора с двумя различными радиусами можно записать следующим образом:

где N и M-натуральные и взаимно простые числа. Передаточные функции существенно зависят от коэффициентов связи, которые характеризуют перекрёстные помехи между резонансными пиками и ложными резонансными пиками.

Использование двойного кольцевого резонатора с разными радиусами открывает возможность получения большего свободного спектра частот по сравнению со случаем одиночного кольцевого резонатора. Передаточная характеристика пропускного порта имеет, в основном, форму Лоренца. Отклик обобщенного фильтра можно реализовать путем использования двух параллельно связанных двойных кольцевых фильтров (R1≠R 2).

Для создания плоскости на верхней части отклика фильтра, предложено использовать тройной кольцевой резонатор с целью увеличения фактора формы и коэффициента вкл\выкл пропускного и результирующего портов. Коэффициенты связи κ 0-3 можно подсчитать для определённого отношения вкл/выкл и для фактора формы, равного 0,6 для результирующего порта. В простейшем случае используются коэффициенты для случая симметричной связи, k 0 =k 3 и k 1 =k 2 .

Передаточная характеристика конфигурации тройного кольцевого резонатора с коэффициентами связи k 0 =k 3 =0,7 для внешней связи и k 1 =k 2 =0,2 для внутренней связи в центре с компенсацией потерь (a segment =0) показана на рис.6. Радиус кольца R=134 мкм был выбран для достижения разнесения каналов 100 ГГц; общий показатель преломления 3,46; отношение вкл/выкл 30 dB. Крутой спад и резкий подъем достигнут за пределами полосы режекции. Возможное решение для реализации такого фильтра и отношения вкл/выкл более 30 дБ достигается для резонаторов без потерь при коэффициентах связи в интервале k 0 =k 3 =0,65-0,7 для внешней связи и k 1 =k 2 =0,18-0,26 для связи в центральной зоне.

Вычислительная модель тройного кольцевого резонатора параллельного соединения показана на рис.6. Передаточная характеристика подсчитана для линейно расположенных одиночных кольцевых резонаторов. Основной составной элемент состоит из одиночного кольцевого резонатора с радиусом окружности R=117 мкм, и длиной 200 мкм для зоны связи и длиной 300 мкм для прямых зон 11 и 15. Сделано допущение об отсутствии потерь в тройном кольцевом резонаторе и постоянстве показателя преломления (который определяет физическую и волноводную дисперсии) для всех сегментов. Расстояние между резонаторами равно Ѕ9+10+11+12+ Ѕ13, что эквивалентно половине кольца окружности резонатора. Отклик пропускного и результирующего портов показана на рис.7. Кольцевые резонаторы синхронизированы по фазе.

Рисунок 7. Тройной кольцевой резонатор

Фактор формы для этой схемы равен 0,18. Плоская характеристика полосы пропускания может быть получена небольшим смещением резонансной частоты каждого одиночного кольцевого резонатора. Это управляемое отклонение от частоты резонанса позволяет реализовать оптические фильтры с полосами пропускания с плоскими вершинами, необходимые для оптических систем мультиплексирования каналов длин волн.

Синтез оптических фильтров с использованием линейного ряда одиночных кольцевых резонаторов с двумя входными/выходными волноводами описан в . Вычисленный спектр передачи ряда из 9 элементов кольцевых резонаторов, работающих без потерь, представлен в Расстояние между параллельно соединенными одиночными кольцевыми резонаторами и влияние на форму фильтра теоретически исследовано в

Для реализации амплитудно-частотного отклика фильтра, который подразумевает высокий фактор формы (0,5–0,6), наиболее удобна конфигурация серийно соединенного тройного кольцевого резонатора. Отклик фильтра в этом случае определяется, в основном, точным выбором коэффициентов связи. Фазу следует подбирать для обеих конфигураций. Преимуществом параллельно соединённого тройного кольцевого резонатора является возможность усиления FSR. Это достижимо только в случае серийно связанных конфигураций, путем выбора наименьшего радиуса кольца.

Был выведен математический инструмент для описания поведения конфигураций кольцевого резонатора. Реализация этих моделируемых структур, работающих без потерь, должна быть выполнена на основе полупроводникового материала с прямой шириной запрещенной зоны для получения активных структур или интегрирования пассивных и активных устройств.

Список литературы:

1.Андросик А.Б., Воробьев С.А., Мировицкая С.Д. Основы волноводной фотоники.- М.: МГОУ, 2009.

2.Андросик А.Б., Воробьев С.А., Мировицкая С.Д. Математические основы волноводной фотоники.- М.: МГОУ, 2010.

3.Андросик А.Б., Воробьев С.А., Мировицкая С.Д. Волноводная и интегральная фотоника.- М.: МГОУ, 2011.

4.Chew Y.H. et al. An Optical Filter of Adjustable Finesse Using an Amplified Fiber Ring Resonator. IEEE J. Lightwave Technol., vol. 15, no. 2, pp. 364-370, 1997.

5.Chin M.K. et al. GaAs Microcavity Channel-Dropping Filter Based on a Race-Track Resonator. IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1620-1622, 1999.

6.Griffel G. Syntesis of Optical Filters Using Ring Resonator Arrays. IEEE Photon/ Technol.Lett. 12(7), 810-812, 2000.

7.Klunder D.J.W. et al. Experimental and numerical study of microresonators with air and polymer cladding. Journal of Lightwave Technology, 21(4):1099–1110, 2003.

8.Madsen C.K. and Zhao J.H. A General Planar Waveguide Autoregressive Optical Filter. IEEE J. Lightwave Technol., vol. 14, no. 3, pp. 437-447, 1996.

9.Marcatili E.A.J. Dielectric Rectangular Waveguide and Directional Coupler for Integrated Optics, Bell Syst. Techn. J., vol. 48, pp. 2071-2101, 1969.

10.Weiershausen W. and Zengerle R. Photonic highway switches based on ring resonators used as frequency-selective components. Appl. Opt., vol. 35, no. 30, pp. 5967-5978, 1996.

11.Yariv A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 36:321–322, 2000.