Минеральные кислоты. Реферат Производство неорганических кислот

Сложные вещества, состоящие из атомов водорода и кислотного остатка, называются минеральными или неорганическими кислотами. Кислотным остатком являются оксиды и неметаллы, соединённые с водородом. Главное свойство кислот - способность образовывать соли.

Классификация

Основная формула минеральных кислот - H n Ac, где Ac - кислотный остаток. В зависимости от состава кислотного остатка выделяют два типа кислот:

  • кислородные, содержащие кислород;
  • бескислородные, состоящие только из водорода и неметалла.

Основной список неорганических кислот в соответствии с типом представлен в таблице.

Тип

Название

Формула

Кислородные

Азотистая

Дихромовая

Йодноватая

Кремниевые - метакремниевая и ортокремниевая

H 2 SiO 3 и H 4 SiO 4

Марганцовая

Марганцовистая

Метафосфорная

Мышьяковая

Ортофосфорная

Сернистая

Тиосерная

Тетратионовая

Угольная

Фосфористая

Фосфорноватистая

Хлорноватая

Хлористая

Хлорноватистая

Хромовая

Циановая

Бескислородные

Фтороводородная (плавиковая)

Хлороводородная (соляная)

Бромоводородная

Йодоводородная

Сероводородная

Циановодородная

Кроме того, в соответствии со свойствами кислоты классифицируются по следующим признакам:

  • растворимость : растворимые (HNO 3 , HCl) и нерастворимые (H 2 SiO 3);
  • летучесть : летучие (H 2 S, HCl) и нелетучие (H 2 SO 4 , H 3 PO 4);
  • степень диссоциации : сильные (HNO 3) и слабые (H 2 CO 3).

Рис. 1. Схема классификации кислот.

Для обозначения минеральных кислот используются традиционные и тривиальные названия. Традиционные названия соответствуют наименованию элемента, который образует кислоту с добавлением морфем -ная, -овая, а также -истая, -новатая, -новатистая для обозначения степени окисления.

Получение

Основные методы получения кислот представлены в таблице.

Свойства

Большинство кислот - жидкости с кислым вкусом. Вольфрамовая, хромовая, борная и несколько других кислот находятся в твёрдом состоянии при нормальных условиях. Некоторые кислоты (Н 2 СО 3 , H 2 SO 3 , HClO) существуют только в виде водного раствора и относятся к слабым кислотам.

Рис. 2. Хромовая кислота.

Кислоты - активные вещества, реагирующие:

  • с металлами:

    Ca + 2HCl = CaCl 2 + H 2 ;

  • с оксидами:

    CaO + 2HCl = CaCl 2 + H 2 O;

  • с основанием:

    H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O;

  • с солями:

    Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O.

Все реакции сопровождаются образованием солей.

Возможна качественная реакция с изменением цвета индикатора:

  • лакмус окрашивается в красный;
  • метил оранж - в розовый;
  • фенолфталеин не меняется.

Рис. 3. Цвета индикаторов при взаимодействии кислоты.

Химические свойства минеральных кислот определяются способностью диссоциироваться в воде с образованием катионов водорода и анионов водородных остатков. Кислоты, реагирующие с водой необратимо (диссоциируются полностью) называются сильными. К ним относятся хлорная, азотная, серная и хлороводородная.

Что мы узнали?

Неорганические кислоты образованы водородом и кислотным остатком, которым являются атомы неметалла или оксид. В зависимости от природы кислотного остатка кислоты классифицируются на бескислородные и кислородсодержащие. Все кислоты имеют кислый вкус и способны диссоциироваться в водной среде (распадаться на катионы и анионы). Кислоты получают из простых веществ, оксидов, солей. При взаимодействии с металлами, оксидами, основаниями, солями кислоты образуют соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 301.

HClO и др.) невозможно выделить в виде индивидуальных соединений, они существуют только в растворе.

По химическому составу различают бескислородные кислоты (HCl, H 2 S, HF, HCN) и кислородсодержащие (оксокислоты)(H 2 SO 4 , H 3 PO 4) . Состав бескислородных кислот можно описать формулой: H n Х, где Х - химический элемент образующий кислоту (галоген , халькоген) или бескислородный радикал: например, бромоводородная HBr, циановодородная HCN, азидоводородная HN 3 кислоты. В свою очередь, все кислородсодержащие кислоты имеют состав, который можно выразить формулой: Н n XО m , где X - химический элемент, образующий кислоту.

Атомы водорода в кислородсодержащих кислотах чаще всего связаны с кислородом полярной ковалентной связью . Известны кислоты с несколькими (чаще двумя) таутомерными или изомерными формами, которые различаются положением атома водорода:

Отдельные классы неорганических кислот образуют соединения, в которых атомы кислотообразующего элемента образуют молекулярные гомо- и гетерогенные цепные структуры. Изополикислоты - это кислоты, в которых атомы кислотообразующего элемента связаны через атом кислорода (кислородный мостик). Примерами выступают полисерные H 2 S 2 O 7 и H 2 S 3 O 10 и полихромовые кислоты H 2 Cr 2 O 7 и H 2 Cr 3 O 10 . Кислоты с несколькими атомами разных кислотообразующих элементов, соединенных через атом кислорода, называются гетерополикислотами . Существуют кислоты, молекулярная структура которых образована цепочкой одинаковых кислотообразующих атомов, например в политионовых кислотах H 2 S n O 6 или в сульфанах H 2 S n , где n≥2.

texvc не найден; См. math/README - справку по настройке.): \mathsf{HA + H_2O \rightleftarrows H_3O^+ + A^-} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{HA \rightarrow H^+ + A^-} (упрощённая запись)
Кислота Значение
(m – n)
K a
HClO 0 10 −8
H 3 AsO 3 0 10 −10
Н 2 SО 3 1 10 −2
Н 3 РО 4 1 10 −2
HNO 3 2 10 1
H 2 SO 4 2 10 3
HClO 4 3 10 10

Данная закономерность обусловлена усилением поляризации связи Н-О вследствие сдвига электронной плотности от связи к электроотрицательному атому кислорода по подвижным π-связям Э=O и делокализацией электронной плотности в анионе .

Неорганические кислоты обладают свойствами, общими для всех кислот, среди которых: окрашивание индикаторов , растворение активных металлов с выделением водорода (кроме HNO 3), способность реагировать с основаниями и основными оксидами с образованием солей, например:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{2HCl + Mg \rightarrow MgCl_2 + H_2\uparrow} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{HNO_3 + NaOH \rightarrow NaNO_3 + H_2O} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{2HCl + CaO \rightarrow CaCl_2 + H_2O}

Число атомов водорода, отщепляемых от молекулы кислоты и способных замещаться на металл с образованием соли, называется основностью кислоты. Кислоты можно разделить на одно-, двух- и трехосновные. Кислоты с более высокой основностью неизвестны.

Одноосновными являются многие неорганические кислоты: галогеноводородные вида HHal, азотная HNO 3 , хлорная HClO 4 , роданистоводородная HSCN и др. Серная H 2 SO 4 , хромовая H 2 CrO 4 , сероводородная H 2 S служат примерами двухосновных кислот и т. д.

Многоосновные кислоты диссоциируют ступенчато, каждой ступени отвечает своя константа кислотности, причем всегда каждая последующая К a меньше предыдущей ориентировочно на пять порядков. Ниже показаны уравнения диссоциации трехосновной ортофосфорной кислоты:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{H_3PO_4 \rightleftarrows H^+ + H_2PO_4^- \ \ K_{a1} = 7\cdot 10^{-3}} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{H_2PO_4^- \rightleftarrows H^+ + HPO_4^{2-} \ \ K_{a2} = 6\cdot 10^{-8}} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{HPO_4^{2-} \rightleftarrows H^+ + PO_4^{3-} \ \ K_{a3} = 1\cdot 10^{-12}}

Основность определяет число рядов средних и кислых солей − производных кислоты .

К замещению способны только атомы водорода, входящие в состав гидроксигрупп −OH, поэтому, например, ортофосфорная кислота H 3 PO 4 образует средние соли - фосфаты вида Na 3 PO 4 , и два ряда кислых − гидрофосфаты Na 2 HPO 4 и дигидрофосфаты NaH 2 PO 4 . Тогда как, у фосфористой кислоты H 2 (HPO 3) только два ряда − фосфиты и гидрофосфиты, а у фосфорноватистой кислоты H(H 2 PO 2) − только ряд средних солей − гипофосфитов.

Общие методы получения кислот

Существует множество методов получения кислот, в т. ч. общих, среди которых в промышленной и лабораторной практике можно выделить следующие:

  • Взаимодействие кислотных оксидов (ангидридов) с водой, например:
Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{P_2O_5 + 3H_2O \rightarrow 2H_3PO_4} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{2CrO_3 + H_2O \rightarrow H_2Cr_2O_7}
  • Вытеснение более летучей кислоты из её соли менее летучей кислотой, например:
Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF\uparrow} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{KNO_3 + H_2SO_4 \rightarrow KHSO_4 + HNO_3\uparrow}
  • Гидролиз галогенидов или солей, например:
Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{Al_2Se_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2Se}
  • Синтез бескислородных кислот из простых веществ
Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathsf{H_2 + Cl_2 \rightarrow 2HCl}
  • Реакции ионного обмена на поверхности ионообменных смол : хемосорбция катионов растворенных солей и замена их на Н + .

Применение

Минеральные кислоты широко применяют в металло- и деревообработке, текстильной, лакокрасочной, нефтегазовой и других отраслях промышленности и в научных исследованиях. К числу веществ, производимых в наибольшем объёме, относятся серная , азотная , фосфорная , соляная кислоты. Суммарное годовое производство в мире этих кислот исчисляется сотнями миллионов тонн в год.

В металлообработке они часто используются для травления железа и стали и в качестве очищающих агентов перед сваркой , металлизацией , окраской или гальванической обработкой .

Серная кислота , метко названная Д. И. Менделеевым «хлебом промышленности », применяется в производстве минеральных удобрений , для получения других минеральных кислот и солей, в производстве химических волокон , красителей , дымообразующих и взрывчатых веществ, в нефтяной, металлообрабатывающей, текстильной, кожевенной, пищевой и др. отраслях промышленности, в промышленном органическом синтезе и т. п.

Соляная кислота применяется для кислотной обработки, очищения руд олова и тантала, для производства патоки из крахмала , для удаления накипи с котлов и теплообменного оборудования ТЭЦ . Она также используется в качестве дубильного вещества в кожевенной промышленности.

Азотная кислота применяется при получении аммонийной селитры , использующейся в качестве удобрения и в производстве взрывчатых веществ . Кроме того, она применяется в процессах органического синтеза , в металлургии, при флотации руды и для переработки отработанного ядерного топлива.

Ортофосфорную кислоту широко используют при производстве минеральных удобрений. Она используется при пайке в качестве флюса (по окисленой меди, по чёрному металлу, по нержавеющей стали). Входит в состав ингибиторов коррозии . Также применяется в составе фреонов в промышленных морозильных установках как связующее вещество.

Пероксокислоты , кислородсодержащие кислоты хлора, марганца, хрома находят применение как сильные окислители.

Напишите отзыв о статье "Неорганические кислоты"

Литература

  1. Некрасов Б. В., Основы общей химии, 3 изд., т. 1-2. М., 1973;
  2. Кемпбел Дж., Современная общая химия, пер. с англ., т. 1-3, М., 1975;
  3. Белл Р., Протон в химии, пер. с англ., М., 1977;
  4. Хьюн Д., Неорганическая химия, пер. с англ., М., 1987.

См. также

Примечания


Отрывок, характеризующий Неорганические кислоты

Перед Катарами остановился тот же маленький человечек, Хюг де Арси. Нетерпеливо топчась на месте, видимо, желая поскорее закончить, он хриплым, надтреснутым голосом начал отбор...
– Как тебя зовут?
– Эсклармонд де Перейль, – последовал ответ.
– Хюг де Арси, действую от имени короля Франции. Вы обвиняетесь в ереси Катар. Вам известно, в соответствии с нашим соглашением, которое вы приняли 15 дней назад, чтобы быть свободной и сохранить жизнь, вы должны отречься от своей веры и искренне поклясться в верности вере Римской католической церкви. Вы должны сказать: «отрекаюсь от своей религии и принимаю католическую религию!».
– Я верю в свою религию и никогда не отрекусь от неё... – твёрдо прозвучал ответ.
– Бросьте её в огонь! – довольно крикнул человечек.
Ну, вот и всё. Её хрупкая и короткая жизнь подошла к своему страшному завершению. Двое человек схватили её и швырнули на деревянную вышку, на которой ждал хмурый, бесчувственный «исполнитель», державший в руках толстые верёвки. Там же горел костёр... Эсклармонд сильно ушиблась, но тут же сама себе горько улыбнулась – очень скоро у неё будет гораздо больше боли...
– Как вас зовут? – продолжался опрос Арси.
– Корба де Перейль...
Через коротенькое мгновение её бедную мать так же грубо швырнули рядом с ней.
Так, один за другим Катары проходили «отбор», и количество приговорённых всё прибавлялось... Все они могли спасти свои жизни. Нужно было «всего лишь» солгать и отречься от того, во что ты верил. Но такую цену не согласился платить ни один...
Пламя костра трескалось и шипело – влажное дерево никак не желало гореть в полную мощь. Но ветер становился всё сильнее и время от времени доносил жгучие языки огня до кого-то из осуждённых. Одежда на несчастном вспыхивала, превращая человека в горящий факел... Раздавались крики – видимо, не каждый мог вытерпеть такую боль.

Эсклармонд дрожала от холода и страха... Как бы она ни храбрилась – вид горящих друзей вызывал у неё настоящий шок... Она была окончательно измученной и несчастной. Ей очень хотелось позвать кого-то на помощь... Но она точно знала – никто не поможет и не придёт.
Перед глазами встал маленький Видомир. Она никогда не увидит, как он растёт... никогда не узнает, будет ли его жизнь счастливой. Она была матерью, всего лишь раз, на мгновение обнявшей своего ребёнка... И она уже никогда не родит Светозару других детей, потому что жизнь её заканчивалась прямо сейчас, на этом костре... рядом с другими.
Эсклармонд глубоко вздохнула, не обращая внимания на леденящий холод. Как жаль, что не было солнца!.. Она так любила греться под его ласковыми лучами!.. Но в тот день небо было хмурым, серым и тяжёлым. Оно с ними прощалось...
Кое-как сдерживая готовые политься горькие слёзы, Эсклармонд высоко подняла голову. Она ни за что не покажет, как по-настоящему ей было плохо!.. Ни за что!!! Она как-нибудь вытерпит. Ждать оставалось не так уж долго...
Мать находилась рядом. И вот-вот готова была вспыхнуть...
Отец стоял каменным изваянием, смотря на них обеих, а в его застывшем лице не было ни кровинки... Казалось, жизнь ушла от него, уносясь туда, куда очень скоро уйдут и они.
Рядом послышался истошный крик – это вспыхнула мама...
– Корба! Корба, прости меня!!! – это закричал отец.
Вдруг Эсклармонд почувствовала нежное, ласковое прикосновение... Она знала – это был Свет её Зари. Светозар... Это он протянул руку издалека, чтобы сказать последнее «прощай»... Чтобы сказать, что он – с ней, что он знает, как ей будет страшно и больно... Он просил её быть сильной...
Дикая, острая боль полоснула тело – вот оно! Пришло!!! Жгучее, ревущее пламя коснулось лица. Вспыхнули волосы... Через секунду тело вовсю полыхало... Милая, светлая девочка, почти ребёнок, приняла свою смерть молча. Какое-то время она ещё слышала, как дико кричал отец, называя её имя. Потом исчезло всё... Её чистая душа ушла в добрый и правильный мир. Не сдаваясь и не ломаясь. Точно так, как она хотела.
Вдруг, совершенно не к месту, послышалось пение... Это присутствовавшие на казни церковники начали петь, чтобы заглушить крики сгоравших «осуждённых». Хриплыми от холода голосами они пели псалмы о всепрощении и доброте господа...
Наконец, у стен Монтсегюра наступил вечер.
Страшный костёр догорал, иногда ещё вспыхивая на ветру гаснущими, красными углями. За день ветер усилился и теперь бушевал во всю, разнося по долине чёрные облака копоти и гари, приправленные сладковатым запахом горелой человеческой плоти...
У погребального костра, наталкиваясь на близстоявших, потерянно бродил странный, отрешённый человек... Время от времени вскрикивая чьё-то имя, он вдруг хватался за голову и начинал громко, душераздирающе рыдать. Окружающая его толпа расступалась, уважая чужое горе. А человек снова медленно брёл, ничего не видя и не замечая... Он был седым, сгорбленным и уставшим. Резкие порывы ветра развевали его длинные седые волосы, рвали с тела тонкую тёмную одежду... На мгновение человек обернулся и – о, боги!.. Он был совсем ещё молодым!!! Измождённое тонкое лицо дышало болью... А широко распахнутые серые глаза смотрели удивлённо, казалось, не понимая, где и почему он находился. Вдруг человек дико закричал и... бросился прямо в костёр!.. Вернее, в то, что от него оставалось... Рядом стоявшие люди пытались схватить его за руку, но не успели. Человек рухнул ниц на догоравшие красные угли, прижимая к груди что-то цветное...
И не дышал.
Наконец, кое-как оттащив его от костра подальше, окружающие увидели, что он держал, намертво зажав в своём худом, застывшем кулаке... То была яркая лента для волос, какую до свадьбы носили юные окситанские невесты... Что означало – всего каких-то несколько часов назад он ещё был счастливым молодым женихом...
Ветер всё так же тревожил его за день поседевшие длинные волосы, тихо играясь в обгоревших прядях... Но человек уже ничего не чувствовал и не слышал. Вновь обретя свою любимую, он шёл с ней рука об руку по сверкающей звёздной дороге Катар, встречая их новое звёздное будущее... Он снова был очень счастливым.
Всё ещё блуждавшие вокруг угасающего костра люди с застывшими в горе лицами искали останки своих родных и близких... Так же, не чувствуя пронизывающего ветра и холода, они выкатывали из пепла догоравшие кости своих сыновей, дочерей, сестёр и братьев, жён и мужей.... Или даже просто друзей... Время от времени кто-то с плачем поднимал почерневшее в огне колечко... полусгоревший ботинок... и даже головку куклы, которая, скатившись в сторону, не успела полностью сгореть...
Тот же маленький человечек, Хюг де Арси, был очень доволен. Всё наконец-то закончилось – катарские еретики были мертвы. Теперь он мог спокойно отправляться домой. Крикнув замёрзшему в карауле рыцарю, чтобы привели его коня, Арси повернул к сидящим у огня воинам, чтобы дать им последние распоряжения. Его настроение было радостным и приподнятым – затянувшаяся на долгие месяцы миссия наконец-то пришла к «счастливому» завершению... Его долг был исполнен. И он мог честно собой гордиться. Через короткое мгновение вдали уже слышалось быстрое цоканье конских копыт – сенешаль города Каркассона спешил домой, где его ждал обильный горячий ужин и тёплый камин, чтобы согреть его замёрзшее, уставшее с дороги тело.
На высокой горе Монтсегюр слышался громкий и горестный плач орлов – они провожали в последний путь своих верных друзей и хозяев... Орлы плакали очень громко... В селении Монтсегюр люди боязливо закрывали двери. Плач орлов разносился по всей долине. Они скорбели...

Страшный конец чудесной империи Катар – империи Света и Любви, Добра и Знания – подошёл к своему завершению...
Где-то в глубине Окситанских гор ещё оставались беглые Катары. Они прятались семьями в пещерах Ломбрив и Орнолак, никак не в силах решить, что же делать дальше... Потерявшие последних Совершенных, они чувствовали себя детьми, не имевшими более опоры.
Они были гонимы.
Они были дичью, за поимку которой давались большие награды.

И всё же, Катары пока не сдавались... Перебравшись в пещеры, они чувствовали себя там, как дома. Они знали там каждый поворот, каждую щель, поэтому выследить их было почти невозможно. Хотя прислужники короля и церкви старались вовсю, надеясь на обещанные вознаграждения. Они шныряли в пещерах, не зная точно, где должны искать. Они терялись и гибли... А некоторые потерянные сходили с ума, не находя пути назад в открытый и знакомый солнечный мир...
Особенно преследователи боялись пещеру Сакани – она заканчивалась шестью отдельными ходами, зигзагами вёдшими прямиком вниз. Настоящую глубину этих ходов не знал никто. Ходили легенды, что один из тех ходов вёл прямиком в подземный город Богов, в который не смел спускаться ни один человек.
Подождав немного, Папа взбесился. Катары никак не хотели исчезнуть!.. Эта маленькая группка измученных и непонятных ему людей никак не сдавалась!.. Несмотря на потери, несмотря на лишения, несмотря ни на что – они всё ещё ЖИЛИ. И Папа их боялся... Он их не понимал. Что двигало этими странными, гордыми, неприступными людьми?!. Почему они не сдавались, видя, что у них не осталось никаких шансов на спасение?.. Папа хотел, чтобы они исчезли. Чтобы на земле не осталось ни одного проклятого Катара!.. Не в силах придумать ничего получше, он приказал послать в пещеры полчища собак...
Рыцари ожили. Вот теперь всё казалось простым и лёгким – им не надо было придумывать планы по поимке «неверных». Они шли в пещеры «вооружившись» десятками обученных охотничьих псов, которые должны были их привести в самое сердце убежища катарских беглецов. Всё было просто. Оставалось лишь чуточку подождать. По сравнению с осадой Монтсегюра, это была мелочь...
Пещеры принимали Катар, раскрыв для них свои тёмные, влажные объятия... Жизнь беглецов становилась сложной и одинокой. Скорее уж, это было похоже на выживание... Хотя желающих оказать беглецам помощь всё ещё оставалось очень и очень много. В маленьких городках Окситании, таких, как княжество де Фуа (de Foix), Кастеллум де Вердунум (Castellum de Verdunum) и других, под прикрытием местных сеньоров всё ещё жили Катары. Только теперь они уже не собирались открыто, стараясь быть более осторожными, ибо ищейки Папы никак не соглашались успокаиваться, желая во что бы то ни стало истребить эту скрывавшуюся по всей стране окситанскую «ересь»...
«Будьте старательны в истреблении ереси любыми путями! Бог вдохновит вас!» – звучал призыв Папы крестоносцам. И посланцы церкви действительно старались...
– Скажи, Север, из тех, кто ушёл в пещеры, дожил ли кто либо до того дня, когда можно было, не боясь, выйти на поверхность? Сумел ли кто-то сохранить свою жизнь?
– К сожалению – нет, Изидора. Монтсегюрские Катары не дожили... Хотя, как я тебе только что сказал, были другие Катары, которые существовали в Окситании ещё довольно долго. Лишь через столетие был уничтожен там последний Катар. Но и у них жизнь была уже совершенно другой, намного более скрытной и опасной. Перепуганные инквизицией люди предавали их, желая сохранить этим свои жизни. Поэтому кто-то из оставшихся Катар перебирался в пещеры. Кто-то устраивался в лесах. Но это уже было позже, и они были намного более подготовлены к такой жизни. Те же, родные и друзья которых погибли в Монтсегюре, не захотели жить долго со своей болью... Глубоко горюя по усопшим, уставшие от ненависти и гонений, они, наконец, решились воссоединиться с ними в той другой, намного более доброй и чистой жизни. Их было около пятисот человек, включая нескольких стариков и детей. И ещё с ними было четверо Совершенных, пришедших на помощь из соседнего городка.
В ночь их добровольно «ухода» из несправедливого и злого материального мира все Катары вышли наружу, чтобы в последний раз вдохнуть чудесный весенний воздух, чтобы ещё раз взглянуть на знакомое сияние так любимых ими далёких звёзд... куда очень скоро будет улетать их уставшая, измученная катарская душа.
Ночь была ласковой, тихой и тёплой. Земля благоухала запахами акаций, распустившихся вишен и чабреца... Люди вдыхали опьяняющий аромат, испытывая самое настоящее детское наслаждение!.. Почти три долгих месяца они не видели чистого ночного неба, не дышали настоящим воздухом. Ведь, несмотря ни на что, что бы на ней ни случилось, это была их земля!.. Их родная и любимая Окситания. Только теперь она была заполнена полчищами Дьявола, от которых не было спасения.
Не сговариваясь, катары повернули к Монтсегюру. Они хотели в последний раз взглянуть на свой ДОМ. На священный для каждого из них Храм Солнца. Странная, длинная процессия худых, измождённых людей неожиданно легко поднималась к высочайшему из катарских замков. Будто сама природа помогала им!.. А возможно, это были души тех, с кем они очень скоро собирались встречаться?
У подножья Монтсегюра расположилась маленькая часть армии крестоносцев. Видимо, святые отцы всё ещё боялись, что сумасшедшие Катары могут вернуться. И сторожили... Печальная колонна тихими призраками проходила рядом со спящей охраной – никто даже не шевельнулся...
– Они использовали «непрогляд», верно ведь? – удивлённо спросила я. – А разве это умели делать все Катары?..
– Нет, Изидора. Ты забыла, что с ними были Совершенные, – ответил Север и спокойно продолжил дальше.
Дойдя до вершины, люди остановились. В свете луны руины Монтсегюра выглядели зловеще и непривычно. Будто каждый камень, пропитанный кровью и болью погибших Катар, призывал к мести вновь пришедших... И хотя вокруг стояла мёртвая тишина, людям казалось, что они всё ещё слышат предсмертные крики своих родных и друзей, сгоравших в пламени ужасающего «очистительного» папского костра. Монтсегюр возвышался над ними грозный и... никому ненужный, будто раненый зверь, брошенный умирать в одиночку...
Стены замка всё ещё помнили Светодара и Магдалину, детский смех Белояра и златовласой Весты... Замок помнил чудесные годы Катар, заполненные радостью и любовью. Помнил добрых и светлых людей, приходивших сюда под его защиту. Теперь этого больше не было. Стены стояли голыми и чужими, будто улетела вместе с душами сожжённых Катар и большая, добрая душа Монтсегюра...

Катары смотрели на знакомые звёзды – отсюда они казались такими большими и близкими!.. И знали – очень скоро эти звёзды станут их новым Домом. А звёзды глядели сверху на своих потерянных детей и ласково улыбались, готовясь принять их одинокие души.
Наутро все Катары собрались в огромной, низкой пещере, которая находилась прямо над их любимой – «кафедральной»... Там когда-то давно учила ЗНАНИЮ Золотая Мария... Там собирались новые Совершенные... Там рождался, рос и крепчал Светлый и Добрый Мир Катар.
И теперь, когда они вернулись сюда лишь как «осколки» этого чудесного мира, им хотелось быть ближе к прошлому, которое вернуть было уже невозможно... Каждому из присутствовавших Совершенные тихо дарили Очищение (consolementum), ласково возлагая свои волшебные руки на их уставшие, поникшие головы. Пока все «уходящие» не были, наконец-то, готовы.
В полном молчании люди поочерёдно ложились прямо на каменный пол, скрещивая на груди худые руки, и совершенно спокойно закрывали глаза, будто всего лишь собирались ко сну... Матери прижимали к себе детей, не желая с ними расставаться. Ещё через мгновение вся огромная зала превратилась в тихую усыпальницу уснувших навеки пяти сотен хороших людей... Катар. Верных и Светлых последователей Радомира и Магдалины.
Их души дружно улетели туда, где ждали их гордые, смелые «братья». Где мир был ласковым и добрым. Где не надо было больше бояться, что по чьей-то злой, кровожадной воле тебе перережут горло или попросту швырнут в «очистительный» папский костёр.
Сердце сжала острая боль... Слёзы горячими ручьями текли по щекам, но я их даже не замечала. Светлые, красивые и чистые люди ушли из жизни... по собственному желанию. Ушли, чтобы не сдаваться убийцам. Чтобы уйти так, как они сами этого хотели. Чтобы не влачить убогую, скитальческую жизнь в своей же гордой и родной земле – Окситании.
– Зачем они это сделали, Север? Почему не боролись?..
– Боролись – с чем, Изидора? Их бой был полностью проигран. Они просто выбрали, КАК они хотели уйти.
– Но ведь они ушли самоубийством!.. А разве это не карается кармой? Разве это не заставило их и там, в том другом мире, так же страдать?
– Нет, Изидора... Они ведь просто «ушли», выводя из физического тела свои души. А это ведь самый натуральный процесс. Они не применяли насилия. Они просто «ушли».
С глубокой грустью я смотрела на эту страшную усыпальницу, в холодной, совершенной тишине которой время от времени звенели падающие капли. Это природа начинала потихоньку создавать свой вечный саван – дань умершим... Так, через годы, капля за каплей, каждое тело постепенно превратится в каменную гробницу, не позволяя никому глумиться над усопшими...

Соляная кислота. Соляная кислота (НС1) относится к группе неорганических кислот.

Чистая соляная кислота представляет собой бесцветную жидкость с резким раздражающим хлорным запахом, удельный вес при температуре 15° равен 1,1, на воздухе выделяет хлористый водород, называется дымящей кислотой.

Хлористый водород - газ, хорошо растворим в воде: в одном объеме воды при температуре 0° может раствориться 503 объема хлористого водорода.

Соляная кислота применяется в производстве различных солей, в металлургической промышленности, при добыче золота, серебра и платины, в лабораторной практике и в медицине.

В зубопротезной технике соляную кислоту использует для отбеливания золота при изготовлении коронок. Раствор соляной кислоты с азотной кислотой используют для отбеливания нержавеющей стали.

Соляная кислота при неумелом с ней обращении может оказывать вредное действие на организм. При вдыхании паров кислоты могут развиться воспалительные процессы слизистой оболочки носа. Работать с кисло.той следует в вытяжном шкафу.

Хранить соляную кислоту необходимо в стеклянных сосудах с притертой пробкой, нельзя хранить вместе с инструментами и зуботехническими материалами.

Азотная кислота. Азотная кислота (НЫОз) относится к неорганическим кислотам. В чистом виде представляет собой бесцветную жидкость, дымящуюся на воздухе, обладает едким раздражающим запахом.

Удельный вес ее 1,56, температура кипения 86°. Затвердевание при температуре 41,3°.

Техническая азотная кислота содержит 68% чистой азотной кислоты, имеет желтоватую окраску вследствие частичного ее разложения под действием света при хранении. При разложении кислоты образуется двуокись азота.

Азотная кислота является очень активной кислотой, растворяет почти все металлы, кроме золота и платины.

В промышленности азотная кислота применяется для изготовления азотистых удобрений, взрывчатых веществ, лекарственных препаратов, красителей и др.

В зубопротезной технике азотная кислота применяется в составе царской водки для растворения золота и платины при аффинаже, входит в состав отбела для` нержавеющей стали.

Чистой азотной кислотой можно выделить золото из сплава (метод квартования).

Серная кислота. Серная кислота (H2SO4) представляет собой химическое соединение серного ангидрида S0

с водой Н

Чистая серная кислота - бесцветная, маслянистая жидкость. Удельный вес ее 1,84, кипит при температуре 338°, обладает небольшой летучестью.

Серная кислота жадно соединяется с водой, образуя большое количество тепла, поглощает влагу из воздуха. Эту способность следует учитывать при составлении растворов серной кислоты. Изготавливая нужный раствор, кислоту добавляют в воду постепенно. Нельзя лить воду в кислоту, так как при этом возникает бурная реакция, которая приводит к разбрызгиванию кислоты.

Свойства серной кислоты активно адсорбировать влагу из воздуха используют для высушивания помещений. На зиму устанавливают сосуд с серной кислотой в оконные проемы, чтобы стекла не запотевали и не покрывались ледяной коркой.

Серную кислоту получают из серного ангидрида. Вначале получают сернистый газ, или сернистый ангидрид. Сернистый ангидрид можно получить при сжигании серы или нагревании железной руды, содержащей серу (серный колчедан FeS

), в процессе выплавки металла.

В промышленности в процессе добывания металлов сернистый газ является побочным продуктом, его используют для получения серной кислоты.

Серная кислота широко применяется в промышленности для получения меди, цинка, никеля, серебра,


Производство неорганических кислот. Особенности хранения и использования. Пожарная опасность неорганических кислот


СОДЕРЖАНИЕ
Введение_________________ _______________________3

    Производство неорганических кислот____________7
Соляная кислота_______________________ _____7
Азотная кислота_______________________ _____7
Серная кислота__ ___________________________8
    Применение неорганических кислот_____________10
Соляная кислота_______________________ ____10
Азотная кислота_______________________ ____10
Серная кислота__ __________________________11
    Особенности хранения неорганических кислот_____13
Соляная кислота_______________________ ______15
Азотная кислота_______________________ ______19
Серная кислота__ ____________________________20
    Пожарная опасность неорганических кислот________24
Соляная кислота_______________________ ______25
Азотная кислота_______________________ ______26
Серная кислота__ ____________________________27
Заключение_______________ _________________________29
Библиография_____________ _________________________30

ВВЕДЕНИЕ
Неорганические кислоты - неорганические вещества, молекулы которых при электролитической диссоциации в водной среде отщепляют протоны , в результате чего в растворе образуются гидроксоний -катионы Н 3 О + и анионы кислотных остатков А:
    НА + Н 2 O - Н 3 О + + А (1)
Исключение составляет борная кислота H 3 BO 3 , которая акцептирует ионы ОН - , в результате чего в водном растворе создается избыток гидроксоний-катионов:
    H 3 BO 3 + 2Н 2 O - - + H 3 O +
Число отщепляемых от молекулы кислоты протонов называется основностью кислоты. Теории кислот и оснований (Брёнстеда, Льюиса и др.) кроме указанных выше относят к кислотам многие иные соединения . Общее свойство кислот - способность реагировать с основаниями и основными оксидами с образованием солей, например:
    HNO 3 + NaOH > NaNO 3 + H 2 O
    2HCl + CaO > CaCl 2 + H 2 O
Классификация кислот
Кислоты неорганические подразделяют на кислородсодержащие (оксокислоты) общей формулы Н n ЭО m , где Э - кислотообразующий элемент, и бескислородные H n Х, где Х - галоген , халькоген или неорганический бескислородный радикал (CN, NCS, N 3 и др.). Оксокислоты характерны для многих химических элементов, особенно для элементов в высоких (+3 и выше) степенях окисления .
Атомы Н в оксокислотах обычно связаны с кислородом. Если в оксокислоте имеются атомы Н, не связанные с кислородом (например, два атома Н, образующие связи Р-Н в Н 3 РО 2), то они не отщепляются в водном растворе с образованием Н 3 O + и не принимают участия в реакции кислот с основаниями. Некоторые кислоты известны в двух таутомерных формах, различающихся положением атома Н, например.:

Молекулы многих кислот содержат более одного атома кислотообразующего элемента Э. Очень многочисленны изополикислоты, содержащие атомы Э, связанные через атом кислорода, причем фрагменты -Э-О-Э- могут образовать как открытые цепи (например, в Н 4 Р 2 О 7), так и циклические структуры [например, в (НРО 3) n ]. В некоторых кислотах содержатся цепи из одинаковых атомов, например, цепи -S-S- в политионовых кислотах H 2 S n O 6 или сульфанах H 2 S n . Известны гетерополикислоты , имеющие фрагменты -Э-О-Э"-, где Э и Э"-атомы двух разных элементов, например: H 4 ?14H 2 O. Существует множество комплексных кислот, например: H 2 , H, H 4 . Кислоты аналогичные оксокислотам, но содержащие вместо атома (атомов) кислорода серу, называются тиокислотами, например Н 2 S 2 O 3 , Н 3 AsS 3 . Пероксокислоты, например H 2 S 2 O 8 , имеют пероксогруппы -О-О-.
Константу равновесия реакции (1) называют константой кислотности Ka. Многоосновные кислоты диссоциируют ступенчато, каждой ступени отвечает своя К a , причем всегда K a(1) "K a(2) ориентировочно каждая последующая Ka меньше предыдущей на 5 порядков. По значению рК 1 = -lgK a(1) Неорганические кислоты подразделяют на очень слабые, слабые, средней силы, сильные, очень сильные. Согласно правилу Полинга, для очень слабых оксокислот НnЭOm разность m - n = 0, для слабых, сильных и очень сильных эта разность составляет соответственно 1, 2 и 3. Данная закономерность обусловлена сдвигом электронной плотности от связи Н-О к связям Э = O (содержащим атом О с большим значением электроотрицательности ) и делокализацией электронной плотности в анионе .
Характеристики кислот
Для характеристики кислотности веществ в неводных средах используют функцию кислотности Гаммета Н 0 . Известны жидкости, для которых Н 0 более отрицательна, чем для концентрированных водных растворов очень сильных кислот, таких, как HNO 3 , Н 2 SO 4 . Эти жидкости называются сверхкислотами. Примеры: 100%-ная H 2 SO 4 (H 0 = ?12), безводная фторсульфоновая кислота HSO 3 F (H 0 = ?15), смесь HF и SbF 5 , (H 0 = ?17), 7%-ный раствор SbF 5 в HSO 3 F (Н 0 = ?19,4). Эквимолярную смесь HSO 3 F и SbF 5 называют «магической кислотой». Сверхкислотность обусловлена исключительной слабостью взаимодействия с протоном соответствующих анионов (HSO 4 - , SbF 6 - и др.). В среде сверхкислот протонируются вещества, обычно не проявляющие основных свойств, в частности углеводороды. Это явление используют на практике, преимущественно в органического синтезе (алкилирование по Фриделю - Крафтсу , гидрирование нефти и др.).
Многие оксокислоты (HNO 3 , HMnO 4 , Н 2 Cr 2 O 7 , HClO и др.) - сильные окислители. Окислительная активность этих кислот в водном растворе выражена сильнее, чем у их солей. Все пероксокислоты - сильные окислители. Неорганические кислоты всегда менее термически устойчивы, чем их соли, образованные активными металлами (Na , К и др.). Некоторые кислоты (Н 2 СО 3 , Н 2 SO 3 , HClO и др.) невозможно выделить в виде индивидуальных соединений эти кислоты существуют только в растворе.
Общие методы получения кислот
1. взаимодействие оксидов (ангидридов) с водой, например:
    Р 2 O 5 + Н 2 O > Н 3 РО 4
2. вытеснение более летучей кислоты из ее соли менее летучей кислотой, например:
    CaF 2 + H 2 SO 4 > CaSO 4 + 2HF
3. гидролиз галогенидов или солей, например:
    PI 3 + 3Н 2 O > Н 3 РО 3 + 3HI
    Al 2 Se 3 + 6H 2 O > 2Al(ОН) 3 + 3H 2 Se
замена катионов растворенных солей на Н + с помощью катионита . Существует также множество др. методов получения кислот.
Применение
Кислоты применяют в промышленности и в научных исследованиях. В больших количествах производят серную кислоту , азотную кислоту , соляную кислоту и др.
    ПРОИЗВОДСТВО НЕОРГАНИЧЕСКИХ КИСЛОТ
Соляная кислота
Соляную кислоту получают растворением газообразного хлороводорода в воде . Хлороводород получают сжиганием водорода в хлоре . В лабораторных условиях используется разработанный ещё алхимиками способ, заключающийся в действии крепкой серной кислоты на поваренную соль:
    NaCl + H 2 SO 4 (конц.) (150 °C) > NaHSO 4 + HCl ^
При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:
    NaCl + NaHSO 4 (>550 °C) > Na 2 SO 4 + HCl ^
Хлороводород прекрасно растворим в воде . Так, при 0 °C 1 объём воды может поглотить 507 объёмов HCl , что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость HCl ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.
Азотная кислота
Современный способ её производства основан на каталитическом окислении синтетического аммиака на платино - родиевых катализаторах (метод Габера ) до смеси оксидов азота (нитрозных газов), с дальнейшим поглощением их водой
    4 NH 3 + 5 O 2 (Pt) > 4 NO + 6 H 2 O
2 NO + O 2 > 2 NO 2 4 NO 2 + O 2 + 2 H 2 O > 4HNO 3 Концентрация полученной таким методом азотной кислоты колеблется, в зависимости от технологического оформления процесса от 45 до 58 %. Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса:
    4 KNO 3 + 2 (FeSO 4 · 7H 2 O) (t°) > Fe 2 O 3 + 2 K 2 SO 4 + 2HNO 3 ^ + NO 2 ^ + 13 H 2 O
Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой:
    KNO 3 + H 2 SO 4 (конц.) (t°) > KHSO 4 + HNO 3 ^
Дальнейшей дистилляцией может быть получена т. н. «дымящая азотная кислота», практически не содержащая воды.
Серная кислота

Структурная формула серной кислоты
Сырьём для получения серной кислоты служат сера , сульфиды металлов , сероводород , отходящие газы теплоэлектростанций, сульфаты железа , кальция и др.

Основные этапы

Основные стадии получения серной кислоты:
    Обжиг сырья с получением SO 2
    Окисление SO 2 в SO 3
    Абсорбция SO 3
В промышленности применяют два метода окисления SO 2 в производстве серной кислоты: контактный - с использованием твердых катализаторов (контактов), и нитрозный - с оксидами азота .
Ниже приведены реакции по производству серной кислоты из минерала пирита на катализаторе - оксиде ванадия (V).
    4 FeS 2 + 11 O 2 = 2 Fe 2 O 3 + 8 SO 2
    2SO 2 + O 2 (V 2 O 5 ) > 2 SO 3

Нитрозный метод получения
серной кислоты
    SO 2 + NO 2 > SO 3 + NO ^.
    2 NO + O 2 > 2 NO 2
При реакции SO 3 с водой выделяется огромное количество теплоты и серная кислота начинает закипать с образованием "туманов" SO 3 + H 2 O = H 2 SO 4 + Q Поэтому SO 3 смешивается с H 2 SO 4 , образуя раствор SO 3 в 91% H 2 SO 4 - олеум
Получение серной кислоты (т.н. купоросное масло) из железного купороса - термическое разложение сульфата железа (II) с последующим охлаждением смеси
    2 FeSO 4 ·7H 2 O >Fe 2 O 3 +SO 2 +H 2 O+O 2
    SO 2 +H 2 O+O 2 ? H 2 SO 4
    ПРИМЕНЕНИЕ НЕОРГАНИЧЕСКИХ КИСЛОТ
Соляная кислота

Промышленность

    Применяют в гидрометаллургии и гальванопластике (травление , декапирование ), для очистки поверхности металлов при паянии и лужении, для получения хлоридов цинка, марганца, железа и др. металлов. В смеси с ПАВ используется для очистки керамических и металлических изделий (тут необходима ингибированная кислота) от загрязнений и дезинфекции .
    В пищевой промышленности зарегистрирована в качестве регулятора кислотности , пищевой добавки E507 . Применяется для изготовления зельтерской (содовой) воды .

Медицина

    Составная часть желудочного сока ; разведенную соляную кислоту ранее назначали внутрь главным образом при заболеваниях, связанных с недостаточной кислотностью желудочного сока.
Азотная кислота
    производство азотных и сложных минеральных удобрений
    производство нитратов натрия, калия, кальция
    в гидрометаллургии
    производство взрывчатых веществ
    производство серной и фосфорной кислот
    получение ароматических нитросоединений
    производство красителей
    входит в состав ракетного топлива
    травление и растворение металлов в металлургии
    травление полупроводниковых материалов
Для практических целей используют 30-60%-ные водные растворы азотной кислоты или 97-99%-ные (концентрированная азотная кислота).

Смесь концентрированных азотной и соляной кислот (соотношение по объему 1:3) называют царской водкой , она растворяет даже благородные металлы. Смесь HNO3 концентрации около 100% и H 2 SO 4 концентрации около 96% при их соотношении по объему 9:1 называют меланжем.

Серная кислота
    производство минеральных удобрений
    электролит в свинцовых аккумуляторах
    получение различных минеральных кислот и солей, химических волокон, красителей
    производство дымообразующих и взрывчатых веществ
    нефтяная, металлообрабатывающая, текстильная, кожевенная промышленности
    в пищевой промышленности - зарегистрирована в качестве пищевой добавки E513 (эмульгатор );
В промышленном органическом синтезе в реакциях
    дегидратации (получение диэтилового эфира, сложных эфиров)
    гидратации (этанол из этилена), сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей)
    алкилирования (получение изооктана, полиэтиленгликоля, капролактама)
    сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей)
Самый крупный потребитель серной кислоты - производство минеральных удобрений. На 1 т P ? O ? фосфорных удобрений расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH ? ) ? SO ? - 0,75 т серной кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.
    ОСОБЕННОСТИ ХРАНЕНИЯ
Безопасность и охрана здоровья
Везде, где это возможно, агрессивные кислоты должны заменяться другими, представляющими меньшую опасность; необходимо использовать минимально допустимую для процесса концентрацию. При применении минеральных кислот должны соблюдаться соответствующие меры безопасности при хранении, транспортировке, утилизации, а также обеспечиваться необходимая вентиляция, индивидуальные средства защиты и меры первой помощи.
Хранение . Помещения для хранения кислот должны быть изолированы от других, иметь хорошую вентиляцию и защиту от солнечного света и источников тепла; они должны иметь цементный пол и не содержать материалов, с которыми могла бы вступать в реакцию кислота. Большие склады должны быть окружены ограждениями для сбора кислоты в случае утечки и снабжены средствами нейтрализации. Вне помещения для хранения кислот должны располагаться пожарный гидрант и автономное дыхательное оборудование на случай чрезвычайной ситуации и необходимости проведения спасательных работ. Утечки должны быть немедленно ликвидированы путем промывания струей воды; в случае большой утечки персонал должен покинуть помещение, а затем нейтрализовать кислоту. Электрооборудование должно быть водонепроницаемым и быть стойким к воздействию кислот. Желательно использовать безопасное освещение.
Емкости необходимо хранить плотно закрытыми, они должны быть четко промаркированы, чтобы было известно их содержимое. Трубы, соединения, уплотнения и клапаны должны быть сделаны из стойких к кислотам материалов. Стеклянные или пластмассовые емкости должны быть надежно защищены от ударов; их необходимо приподнять над полом, чтобы облегчить промывку в случае утечки. Цилиндрические контейнеры должны храниться на стеллажах и быть закреплены. Баллоны с газообразными ангидридами должны храниться в вертикальном положении и иметь колпаки. Пустые и полные емкости предпочтительно хранить раздельно.
Транспортировка . Кислоты должны подаваться через герметичные системы, чтобы исключить возможность контакта с ними. При транспортировке контейнеров, необходимо использовать соответствующее оборудование, а работы выполняться квалифицированным персоналом. Декантирование должно проводиться только посредством специальных сифонов, насосов, устройств для наклона цилиндрических контейнеров или бутылей и т.д. Цилиндры с безводным ангидридом должны быть снабжены специальными сливными клапанами и штуцерами.
При смешивании кислот с другими химическими соединениями или водой, рабочие должны ясно представлять себе, что может произойти интенсивная реакция. Для того, чтобы избежать чрезмерного выделения тепла и бурной реакции, которая может вызвать брызги и попадание кислоты на кожу или в глаза, концентрированная кислота должна медленно добавляться в воду, а не наоборот.
Вентиляция . Там, где образуются аэрозоли или пары кислот, например при гальваностегии, должна быть обеспечена хорошая вентиляция.
Индивидуальная защита . Люди, сталкивающиеся с брызгами минеральных кислот, должны пользоваться кислотоустойчивыми средствами индивидуальной защиты: предохраняющими руки, глаза, лицо, применять фартуки, комбинезоны и защитные костюмы.
Когда рабочим для обслуживания или ремонта требуется проникнуть внутрь резервуара, где хранились кислоты, необходимо предварительно очистить резервуар и принять все меры предосторожности при работе в замкнутых пространствах, приведенные в других разделах данной Энциклопедии.
Обучение. Все рабочие, имеющие дело с кислотами, должны быть проинструктированы относительно их опасных свойств. Определенные виды работ, например, проводимые в замкнутых пространствах или те, в которых задействовано большое количество кислот, должны производиться двумя работниками, один из которых всегда готов в случае необходимости прийти на помощь другому.
Санитария . При контакте с неорганическими кислотами первостепенное значение имеет личная гигиена. Работникам требуется обеспечить соответствующие санитарные условия, и им необходимо тщательно мыться по окончании смены.
Неотложная помощь . При попадании кислот на кожу или в глаза следует немедленно и обильно промыть проточной водой. Поэтому в помещениях должны быть предусмотрены души, фонтанчики для промывки глаз, ванны или резервуары с водой. Необходимо снять загрязненную одежду и выполнить процедуру обработки кожи. Обычной процедурой является нейтрализация загрязненной кожи 2-3% раствором двууглекислого натрия, 5 % раствором углекислого натрия и 5 % раствором гипосульфита натрия, или 10 % раствором триэтаноламина.
Людей, вдохнувших пары кислот, необходимо немедленно удалить из загрязненной зоны, обеспечить покой и оказать медицинскую помощь. При случайном глотании кислоты необходимо дать нейтрализующее вещество и промыть желудок. Не следует искусственно вызывать рвоту.
Медицинское наблюдение . Рабочие должны проходить медицинское обследование перед приемом на работу и периодически в период работы. Медицинское обследование перед приемом на работу должно быть направлено, в основном, на выявление хронических заболеваний желудочно-кишечного тракта, кожи, глаз, дыхательной и нервной системы. Периодические проверки должны проводиться через короткие интервалы времени и включать в себя проверку состояния зубов.
Соляная кислота
Техническую синтетическую соляную кислоту наливают в специальные гуммированные цистерны отправителя или получателя, гуммированные контейнеры, полиэтиленовые бочки вместимостью 50 дм 3 и стеклянные бутыли вместимостью 20 дм 3 согласно действующей нормативной документации.
Стеклянные бутыли упаковывают в ящики типа V-1, номер 3-2 по ГОСТ 18573. Упаковка должна соответствовать ГОСТ 26319.
Допускается заливать продукт в цистерны и контейнеры с остатком соляной кислоты, если анализ остатка подтверждает соответствие его качества требованиям настоящего стандарта, В противном случае остаток соляной кислоты удаляют, а цистерну или контейнер промывают.
Бочки и бутыли должны быть сухими и чистыми.
Наливные люки цистерн, контейнеров и пробки бочек должны быть герметизированы резиновыми или полиэтиленовыми прокладками, как при отправке потребителям (заполненных кислотой), так и при возврате поставщику порожней тары.
и т.д.................

Третье большое достижение химии XIII в.- получение минеральных кислот . Первые упоминания о серной и азотной кислотах встречаются в византийской рукописи XIII в.

Еще в древности было замечено, что при нагревании квасцов или купороса выделяются «кислые пары». Однако получение серной кислоты было впервые освоено лишь в конце XIII в. В книгах Гебера излагается опыт получения серной и соляной кислот, а также царской водки.

Серная кислота долгое время применялась лишь как реактив в лабораториях, а со второй половины XVIII в. ее использовали в ремесленной практике - вначале при окраске веществ, а затем также для отбеливания. В 1744 г. саксонский горный советник Барт из фрейберга открыл процесс сульфирования индиго и впервые применил его для окраски шерсти. В связи с этим спрос на серную кислоту непрерывно увеличивался и появились рациональные способы ее производства. И. X. Бернхардт и X. И. Кёлер организовали несколько сернокислотных заводов, главным образом в Саксонии. Эти предприятия поставляли серную кислоту во Франкфурт, Бремен, Нюрнберг, а также за пределы Германии. В конце XVIII в. только в Рудных горах работало 30 сернокислотных заводов. Почти одновременно такие же заводы появились в Богемии и Гарце. Наиболее крупные предприятия, производившие серную кислоту, принадлежали фабриканту Иоганну Давиду Штарку из Пльзеня. Штарк - опытный специалист по хлопковому волокну - впервые понял важное значение серной кислоты как вспомогательного материала при отбеливании хлопка.

Бурное развитие текстильных фабрик в эпоху промышленной революции, осуществлявшееся благодаря созданию ткацких и прядильных станков, стало возможным лишь в связи с применением новых химических эффективных методов отбеливания и окраски тканей. Первая английская фабрика серной кислоты была создана в Ричмонде (около Лондона) д-ром Вардом в 1736 г. На ней в 50 стеклянных сосудах изготовлялось около 200 л серной кислоты в сутки. Спустя 10 лет (в 1746 г.) Рёбук и Гарбет значительно усовершенствовали это производство: вместо стеклянных баллонов они стали применять свинцовые камеры. Фестер сообщал, что на некоторых сернокислотных заводах действовало в то время до 360 свинцовых камер. Только в Глазго и Бирмингеме в конце XVIII в. работало уже восемь таких предприятий.

В 1750 г. Хоум из Эдинбурга установил, что серная кислота может применяться как заменитель кислого молока для подкисления при отбеливании льняных холстов и хлопка. Применять серную кислоту было выгоднее, чем кислое молоко. Во-первых, серная кислота стоила дешевле, а во-вторых, отбеливание с помощью серной кислоты позволило сократить продолжительность процесса от 2-3 недель до 12 ч.

В отличие от серной кислоты азотная кислота значительно раньше стала применяться в ремесленной практике. Она была ценным продуктом, широко используемым в металлургии благородных металлов. В Венеции - одном из крупнейших культурных и научных центров эпохи Возрождения - азотная кислота применялась еще в XV в. для выделения золота и серебра. Вскоре другие страны, такие, как Франция, Германия и Англия, последовали этому примеру. Это стало возможным благодаря тому, что величайшие технологи эпохи Возрождения - Бирингуччо, Агрикола и Эркер - описали способы получения азотной кислоты. Согласно этому описанию, селитру вместе с квасцами или купоросом помещали в глиняные колбы, которые затем рядами устанавливали в печи и нагревали. «Кислые» пары конденсировались в специальных приемниках. Подобный способ производства азотной кислоты часто применялся затем в горном деле, металлургии и при получении других химических продуктов с помощью перегонки. Однако установки для перегонки стоили в то время очень дорого, поэтому вплоть до XVIII в. их использовали для иных целей. В XVIII в. в Голландии функционировала громадная фабрика, производившая в год примерно 20 000 фунтов азотной кислоты. С 1788 г. азотная кислота наряду с другими продуктами изготовлялась и в Баварии (в местечке Марктредвитц) на химической фабрике, основанной Фикенчером.

Технология производства азотной кислоты существенно не менялась вплоть до конца XVIII в. Реторты изготовляли из стекла и металла, часто покрытого эмалью. В специальную печь помещали от 24 до 40 реторт сразу. Различали азотную кислоту первой, второй и третьей степени крепости. Ее применяли для различных целей: выделения благородных металлов, при окраске кошенилью, для обработки латуни, в скорняжном деле, при изготовлении головных уборов, гравировке по меди и т. п.

До того как в XVI в. была открыта соляная кислота, царскую водку получали, растворяя нашатырь в азотной кислоте. С помощью азотной кислоты и царской водки удавалось добиться довольно высокой степени извлечения благородных металлов из руд. Это явление алхимики использовали как «доказательство» осуществления трансмутаций. Они объясняли повышение выхода благородных металлов тем, что в результате трансмутации якобы появляется новое вещество - серебро или золото. Сложившаяся в эпоху Возрождения «экспериментальная философия» также придавала особое значение «крепкой водке»; некоторые химические процессы, которые осуществлялись с использованием этого соедине­ния, подтверждали атомистические представления.

О соляной кислоте упоминали еще Либавий и Василий Валентин. Однако первое подробное описание химических процессов получения соляной кислоты оставил лишь Глаубер. Соляную кислоту получали из поваренной соли и купороса. Хотя Глаубер писал о возможности разнообразных областей применения соляной кислоты (в частности как приправы к еде), спрос на нее долгое время был невелик. Он значительно вырос лишь после того, как химики разработали методику отбеливания тканей с помощью хлора. Кроме этого, соляную кислоту использовали для получения желатина и клея из костей и для производства берлинской лазури.