Ложный вакуум. Ложный и истинный вакуум: что это такое? Где применяются эти термины и что означают? Что такое ложный вакуум

Самым невероятным концом света стало бы уничтожение мира в результате распада ложного вакуума. В этом случае не только люди, планета, Солнце и Млечный Путь, но и вся наблюдаемая Вселенная прекратили бы свое существование. Таким будущим человечество не раз пугали ученые, в частности философ Ник Бостром, автор работы «Живете ли вы в компьютерной симуляции?». Насколько опасен истинный вакуум для жизни на Земле - в материале «Ленты.ру».

Вакуум в квантовой теории поля отвечает состоянию системы с минимально возможной энергией. Все физические процессы в таком мире происходят с энергиями, превышающими это принимаемое за нулевое значение. Между тем не исключено, что Вселенная или ее наблюдаемая часть находится в метастабильном, или ложном, вакууме. Это означает, что существует еще более выгодное энергетическое положение, в которое может эволюционировать Вселенная - истинный вакуум.

Количественное описание перехода системы из ложного вакуума в истинный впервые предложили в 1970-х годах советские физики. Почти в то же время эти вопросы привлекли внимание американских ученых. К настоящему времени разработан математический аппарат, позволяющий оценить вероятность туннелирования системы из первоначального, метастабильного состояния во второе, более устойчивое. Во многом он основан на статистической физике и квантовой теории поля, составляющими основу так называемого формализма космологических пузырей.

В таком подходе считается, что наблюдаемый мир существует в ложном вакууме. Это состояние, скорее всего, носит метастабильный характер - вся Вселенная или та ее часть, которую видит человек, может находиться в стабильном состоянии огромный по космологическим масштабам промежуток времени, который, однако, конечен. Внутри пузыря ложного вакуума может возникнуть пузырь истинного вакуума. Эволюция Вселенной в этом случае происходит за счет распада первоначального метастабильного состояния.

Пузырь истинного вакуума расширяется внутри пузыря ложного вакуума в соответствии со специальной теорией относительности, не быстрее скорости света, и уничтожает всю материю первоначального мира. Поэтому и говорят о возможной гибели наблюдаемой Вселенной. Однако количественный анализ распада ложного вакуума сопряжен с большой неопределенностью.

Главное, что необходимо сделать, - это оценить вероятность рождения пузыря новой космологической фазы. Есть два основных подхода, позволяющих максимально упростить задачу и получить явные выражения для вероятности перехода - приближения тонкой и толстой стенок. В качестве базового объекта выступает потенциал Хиггса (иначе - Гинзбурга-Ландау) Стандартной модели - современной концепции физики элементарных частиц. В нем присутствует поле Хиггса, ответственное за возникновение у частиц инертной массы.

Образованию пузыря истинного вакуума в пузыре ложного соответствует фазовый переход первого рода, когда система претерпевает скачкообразное, а не непрерывное, как в фазовом переходе второго рода, изменение. Главное в обоих приближениях - высота потенциального барьера, разделяющего ложный и истинный вакуум. Приближение тонкой стенки работает, когда различие между ложным и истинным минимумами потенциала намного меньше высоты барьера между ними.

Если толщина стенок намного меньше радиуса пузыря, основной вклад в вероятность его рождения вносит поверхностная, а не объемная энергия. Определение вероятности при этом сводится к вычислению показателя экспоненты. Приближение толстой стенки гораздо реже используется в физически интересных теориях. И понятно почему: в этом случае вероятность образования пузырьков новой фазы оказывается экспоненциально подавленной - ложный вакуум практически неотличим от истинного.

Вероятность туннелирования зависит от квантовых поправок в потенциал Хиггса, в частности от вклада тяжелых частиц. В настоящее время самой тяжелой элементарной частицей считается топ-кварк - его масса превышает 173 гигаэлектронвольт. Именно поэтому открытия новых тяжелых частиц так важны для космологических моделей - это может повлиять на прогнозы стабильности наблюдаемого мира.

Особая роль в распаде вакуума у гравитации - кривизны пространства-времени. В частности, микроскопические черные дыры, которые могут возникать при столкновениях частиц высоких энергий, в сотни раз повышают вероятность рождения в их окрестностях пузырей с истинным вакуумом. Динамика космологических пузырей еще сложнее, если внутри первоначальной Вселенной формируется несколько пузырей - расширяясь и сталкиваясь друг с другом, они создают новый мир с истинным вакуумом.

Сегодня неизвестно, в каком состоянии находится Вселенная. Если это истинный вакуум, то волноваться не о чем. Если ложный, то, скорее всего, тоже - размеры наблюдаемой Вселенной слишком велики, чтобы новый пузырь, расширяющийся со скоростью света, в сколь-нибудь разумное по меркам человека время заполнил весь мир. Однако есть исключение - если новая фаза каким-либо образом возникнет в непосредственной близости от человечества. Тогда Земля может погибнуть практически мгновенно.

Ртутный вакуумный барометр Эванджелисты Торричелли учёного, впервые создавшего вакуум в лаборатории. Над поверхностью ртути в верхней части запаянной трубки «торричелиева пустота» (вакуум, содержащий пары ртути под давлением насыщения … Википедия

Вакуум (от лат. vacuum пустота) среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься… … Википедия

Вакуум (от лат. vacuum пустота) среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься… … Википедия

Вакуум (от лат. vacuum пустота) среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься… … Википедия

Вакуум (от лат. vacuum пустота) среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься… … Википедия

Манускрипт Войнича написан с помощью неизвестной системы письма Рукопись Войнича (англ. Voyni … Википедия

Инфляция - (Inflation) Инфляция это обесценивание денежной единицы, уменьшение ее покупательной способности Общая информация об инфляции, виды инфляции, в чем состоит экономическая сущность, причины и последствия инфляции, показатели и индекс инфляции, как… … Энциклопедия инвестора

I Мочеиспускательный канал (urethra; синоним уретра) выводной проток мочевою пузыря, по которому моча выводится из организма наружу. Анатомия и гистология Мочеиспускательный канал (рис. 1) начинается на дне мочевого пузыря (Мочевой пузырь)… … Медицинская энциклопедия

I Эхинококкоз (echinococcosis) гельминтоз из группы цистодозов, при котором в печени, легких или других органах и тканях образуются эхинококковые кисты. Наиболее часто Э. встречается в Австралии, Новой Зеландии, странах Южной Америки, Северной… … Медицинская энциклопедия

Черные дыры могут заметно ускорить процесс распада ложного вакуума, в ходе которого Вселенная переходит из текущего метастабильного состояния в состояние с более низкой энергией. В результате подобного распада привычный нам мир перестал бы существовать. Однако двое физиков-теоретиков изучили этот процесс в приближении тонкостенных пузырьков истинного вакуума, прояснили физический смысл «скорости зарождения» и показали, что даже маленькие черные дыры не должны влиять на распад ложного вакуума, поскольку они окружены частицами из-за излучения Хокинга. Статья опубликована в Physical Review D .

Открытие на Большом адронном коллайдере (LHC) бозона Хиггса подтвердило справедливость Стандартной модели . В этой модели потенциал поля Хиггса , ответственного за возникновение массы у элементарных частиц, имеет довольно странную зависимость от энергии. На первый взгляд, при небольших значениях энергии взаимодействия бозонов (порядка тераэлектронвольт) поле имеет минимум, что соответствует вакуумному состоянию нашего пространства-времени (то есть состоянию, в котором энергия обычных полей минимальна). Однако эта зависимость имеет еще один минимум, лежащий в области гораздо больших энергий (порядка 10 12 тераэлектронвольт), причем этот минимум находится ниже. Поэтому наш вакуум считается «ложным» , то есть не отвечающим настоящему минимуму поля Хиггса.


Зависимость потенциала поля Хиггса от рассматриваемого масштаба энергий.


В некоторых случаях может произойти спонтанный переход Вселенной из ложного вакуума в истинный (так называемый «распад ложного вакуума»), при этом будет выделяться огромная энергия. Обычно этот переход объясняют спонтанным образованием пузырьков истинного вакуума в ложном, которые при благоприятных условиях будут бесконечно расширяться, а при неблагоприятных - схлопываться. Отдаленно это напоминает процесс кипения воды, только вместо пузырьков насыщенного пара мы имеем дело с истинным вакуумом. В частности, именно поэтому некоторые люди боятся экспериментов на LHC - они считают, что эти эксперименты могут вызвать подобный переход. В действительности такие опасения не очень основательны, поскольку энергии, достигаемые на коллайдере, относительно малы. Более того, при текущем значении параметров Стандартной модели время жизни ложного вакуума превышает текущий возраст Вселенной, то есть в рамках этой модели наш вакуум является метастабильным.

Однако некоторые процессы могут ускорить распад ложного вакуума. Например, вокруг черной дыры пространство-время сильно искривляется, и правила подсчета энергии пузырька несколько изменяются, что должно увеличивать вероятность распада. При этом чем меньше черная дыра, тем проще вокруг нее образуются пузырьки и тем больше вероятность распада. С другой стороны, мы до сих пор продолжаем жить в ложном вакууме, что указывает либо на отсутствие таких черных дыр, либо на недостатки в наших теориях, либо на наше невероятное везение.

В данной статье физики-теоретики Кёхей Мукаида (Kyohei Mukaida) и Масаки Ямада (Masaki Yamada) исследовали, как происходит образование пузырей истинного вакуума рядом с черной дырой, и показали, что в таких процессах необходимо учитывать окружающую черную дыру разогретую плазму. Для этого они использовали теорию тонкостенного пузыря на фоне черной дыры в пространстве-времени де Ситтера (такое пространство описывает расширяющуюся Вселенную).


Зависимость потенциала пузырька от его радиуса. Легко видеть, что до некоторого размера потенциал растет, и расширяться пузырьку невыгодно.

K. Mukaida and M. Yamada / Phys. Rev. D


«Скорость зарождения» (nucleation rate) таких пузырьков ученые вычислили тремя различными способами. В первом способе, обычно используемом при подобных расчетах, теоретики учитывали искажение метрики возникающими пузырьками. В двух других случаях физики его не учитывали и работали в приближении плоского пространства-времени и фиксированной фоновой метрики, чтобы упростить вычисления и прояснить физический смысл происходящих процессов. Эти два метода физики сравнивают с использованием микроканонического и канонического ансамбля в статистической физике: в первом случае суммарная энергия пузырька и черной дыры сохраняется, а во втором случае остается постоянной только температура. В любом случае, оба этих подхода дают одинаковые результаты, если образующиеся пузырьки слабо искажают пространство-время.

Оказалось, что «скорость зарождения» складывается из двух существенных частей, отвечающих за возникновение пузырей с энергией E и собственно за туннелирование в истинный вакуум. В случае черной дыры энергии E отвечает изменение массы дыры при образовании пузырька. Этот факт ученые доказали двумя способами, пренебрегая действием пузырька на исходную метрику, а затем показали, что при учете этого действия ничего не меняется, если температура черной дыры (определяемая по температуре излучения Хокинга) конечна.

Кроме того, физики заметили, что в квантовой теории поля имеется множество других степеней свободы, и помимо пузырей истинного вакуума вокруг черной дыры также должны возбуждаться другие состояния с энергией E. Поэтому необходимо учитывать поправки к вероятности образования пузырьков, возникающие из-за присутствия плазмы. Такие поправки будут возникать даже в том случае, если черная дыра находится в «пустом» пространстве, поскольку вокруг нее обязательно образуется плазма, разогретая до температуры Хокинга. Оказывается, что в этом случае рождение пузырьков затруднено, поскольку, по словам авторов статьи, «скалярное поле предпочитает симметричную точку в пространстве полей из-за тепловой массы». Поэтому скорость образования пузырьков не должна сильно возрастать даже около небольших черных дыр. Более подробно физики обещают вычислить влияние излучения Хокинга на образование пузырей истинного вакуума в своей следующей работе.

"А ты можешь из ничего что-нибудь сделать, дяденька?" - "Нет, дружок, из ничего не выйдет ничего".
Шекспир, "Король Лир" (пер. Т.Л. Щепкиной-Куперник)

Вакуум - это пустое пространство. Его часто используют как синоним слова "ничто". Вот почему идея энергии вакуума показалась такой странной, когда ее впервые выдвинул Эйнштейн. Однако под влиянием достижений теории элементарных частиц за последние три десятилетия отношение физиков к вакууму коренным образом поменялось. Исследования вакуума продолжаются, и чем больше мы узнаем о нем, тем он кажется сложнее и удивительнее.

Согласно современным теориям элементарных частиц, вакуум - это физический объект; он может быть заряжен энергией и может находиться в разнообразных состояниях. В терминологии физиков эти состояния называют разными вакуумами. Типы элементарных частиц, их массы и взаимодействия определяются лежащим в основе вакуумом. Взаимосвязь между частицами и вакуумом подобна той, что существует между звуковыми волнами и материалом, по которому они распространяются. Вакуум, в котором мы живем, находится в наинизшем энергетическом состоянии, его называют "истинным вакуумом". Вполне возможно, что наш вакуум не является самым низкоэнергетическим. Теория струн, которая на сегодня является основным кандидатом на роль самой фундаментальной физической теории, предполагает существование вакуумов с отрицательной энергией. Если они действительно существуют, то наш вакуум спонтанно распадется с катастрофическими последствиями для всех содержащихся в нем материальных объектов.

Физики собрали массу знаний о частицах, который населяют этот тип вакуума, и силах, действующих между ними. Сильное ядерное взаимодействие, например, связывает протоны и нейтроны в атомных ядрах, электромагнитные силы удерживают электроны на их орбитах вокруг ядер, а слабое взаимодействие отвечает за поведение неуловимых легких частиц, называемых нейтрино. В соответствии со своими именами эти три взаимодействия обладают очень разной силой, причем электромагнитное взаимодействие занимает промежуточное положение между сильным и слабым.

Свойства элементарных частиц в других вакуумах могут быть совершенно иными. Неизвестно, сколько существует разных вакуумов, но физика элементарных частиц позволяет предположить, что их, вероятно, должно быть еще по крайней мере два, причем обладающих большей симметрией и меньшим разнообразием частиц и взаимодействий. Первый из них - это так называемый электрослабый вакуум, в которое электромагнитное и слабое взаимодействия имеют одинаковую силу и проявляются как составляющие одной объединенной силы. Электроны в этом вакууме имеют нулевую массу и неотличимы от нейтрино. Они движутся со скоростью света и не могут удерживаться внутри атомов. Неудивительно, что мы живем не в этом типе вакуума.

Второй - это вакуум Великого объединения, в котором сливаются все три типа взаимодействий между частицами. В этом высокосимметричном состоянии нейтрино, электроны и кварки (из которых состоят протоны и нейтроны) становятся взаимозаменимыми. Если электрослабый вакуум почти наверняка существует, то вакуум Великого объединения - гораздо более умозрительная конструкция. Теории элементарных частиц, которые предсказывают его существование, привлекательны с теоретической точки зрения, но задействуют чрезвычайно высокие энергии, а их наблюдательные подтверждения немногочисленны и в основном носят косвенный характер.

Каждый кубический сантиметр электрослабого вакуума содержит колоссальную энергию и - согласно соотношению Эйнштейна между массой и энергией - громадную массу, около десяти миллионов триллионов тонн (это примерно масса Луны). Сталкиваясь с такими огромными числами, физики переходят на сокращенную запись чисел, выражая их степенями десятки. Триллион - это единица, за которой следует 12 нулей; его записывают как 10^12. Десять миллионов триллионов - это единица с 19 нулями; то есть плотность массы электрослабого вакуума составляет 10^19 тонн на кубический сантиметр. Для вакуума Великого объединения плотность массы оказывается еще больше, причем чудовищно больше - в 10^48 раз. Излишне упоминать, что этот вакуум никогда не создавался в лаборатории: на это потребовалось бы много больше энергии, чем доступно при современных технологиях.

По сравнению с этими ошеломляющими величинами энергия обычного истинного вакуума ничтожна. Долгое время считалось, что она в точности равна нулю, однако недавние наблюдения указывают на то, что вакуум может обладать небольшой положительной энергией, которая эквивалентна массе трех атомов водорода на кубический метр. Значение этого открытия прояснится в главах 9, 12 и 14. Высокоэнергичные вакуумы называют "ложными", поскольку, в отличие от истинного вакуума, они неустойчивы. Спустя короткое время, обычно малую долю секунды, ложный вакуум распадается, превращаясь истинный, а его избыточная энергия высвобождается в виде огненного шара из элементарных частиц. В следующих главах мы гораздо подробнее рассмотрим процесс распада вакуума.

Если вакуум обладает энергией, то, согласно Эйнштейну, он должен иметь и натяжение. Этот вывод легко понять из простых энергетических соображений. Сила всегда действует на физический объект в направлении уменьшения его энергии. (Точнее, потенциальной энергии, которая представляет собой составляющую энергии, не связанную с движением.) Например, сила гравитации тянет объекты вниз, в направлении убывания их энергии. (Гравитационная энергия растет с высотой над землей.) Для ложного вакуума энергия пропорциональна объему, который он занимает, и может быть уменьшена только сокращением объема. Поэтому должна существовать сила, вызывающая сжатие вакуума. Эта сила и есть натяжение.

Но натяжение создает отталкивающий гравитационный эффект. В случае вакуума отталкивание в три раза сильнее, чем гравитационное притяжение, вызванное его массой, так что в сумме получается очень сильное отталкивание. Эйнштейн использовал эту антигравитацию вакуума, чтобы уравновесить гравитационное притяжение обычной материи в своей стационарной модели мира. Он обнаружил, что баланс достигается, когда плотность массы материи в два раза превосходит вакуумную. Гут предложил другой план: вместо уравновешивания Вселенной он хотел ее раздуть. Поэтому он позволил отталкивающей гравитации ложного вакуума господствовать, не встречая сопротивления.

Космическая инфляция

Алан Гут в своем кабинете в Массачусетском технологическом институте. Гут - гордый победитель конкурса на самый захламленный кабинет, организованный в 1995 году газетой Boston Globe.

Что бы случилось, если бы в далеком прошлом пространство Вселенной находилось в состоянии ложного вакуума? Если плотность материи в ту эпоху была меньше, чем требуется для уравновешивания Вселенной, тогда доминировала бы отталкивающая гравитация. Это вызвало бы расширение Вселенной, даже если бы первоначально она не расширялась.
Чтобы сделать наши представления более определенными, будем считать, что Вселенная замкнута. Тогда она раздувается подобно воздушному шару на рисунке 3.1. С ростом объема Вселенной материя разрежается, и ее плотность падает. Однако плотность массы ложного вакуума является фиксированной константой; она всегда остается одинаковой. Так что очень быстро плотность материи становится пренебрежимо малой, мы остаемся с однородным расширяющимся морем ложного вакуума.

Расширение вызывается натяжением ложного вакуума, превосходящим притяжение, связанное с плотностью его массы. Поскольку ни одна из этих величин не меняется со временем, темп расширения остается с высокой точностью постоянным. Этот темп характеризуют пропорцией, в которой Вселенная расширяется за единицу времени (скажем, за одну секунду). По смыслу эта величина очень похожа на темп инфляции в экономике - процентное увеличение цен за год. В 1980 году, когда Гут вел семинар в Гарварде, уровень инфляции в США составлял 14%. Если бы это значение оставалось неизменным, цены удваивались бы каждые 5,3 года. Аналогично, постоянный темп расширения Вселенной подразумевает, что существует фиксированный интервал времени, на протяжении которого размер Вселенной увеличивается вдвое.

Рост, который характеризуется постоянным временем удвоения, называют экспоненциальным. Известно, что он очень быстро приводит к гигантским числам. Если сегодня кусок пиццы стоит 1 доллар, то через 10 циклов удвоения (53 года в нашем примере) его цена составит 1024 доллара, а через 330 циклов достигнет 10^100 долларов. Это колоссальное число, единица, за которой следует 100 нулей, имеет специальное название - гугол. Гут предложил использовать в космологии термин инфляция для описания экспоненциального расширения Вселенной.

Время удвоения для вселенной, заполненной ложным вакуумом, невероятно короткое. И чем выше энергия вакуума, тем оно короче. В случае электрослабого вакуума вселенная расширится в гугол раз за одну тридцатую микросекунды, а в присутствии вакуума Великого объединения это случится в 10^26 раз быстрее. За столь короткую долю секунды область размером с атом раздуется до размеров, намного превосходящих всю наблюдаемую сегодня Вселенную.

Поскольку ложный вакуум нестабилен, он в конце концов распадается, и его энергия зажигает огненный шар из частиц. Это событие обозначает конец инфляции и начало обычной космологической эволюции. Тем самым, из крошечного исходного зародыша мы получаем громадных размеров горячую расширяющуюся Вселенную. А в качестве дополнительного бонуса в этом сценарии удивительным образом исчезают проблемы горизонта и плоской геометрии, характерные для космологии Большого взрыва.

Суть проблемы горизонта состоит в том, что расстояния между некоторыми частями наблюдаемой Вселенной таковы, что они, по-видимому, всегда были больше расстояния, пройденного светом с момента Большого взрыва. Это предполагает, что они никогда не взаимодействовали друг с другом, а тогда трудно объяснить, как они достигли почти точного равенства температур и плотностей. В стандартной теории Большого взрыва путь, пройденный светом, растет пропорционально возрасту Вселенной, тогда как расстояние между областями увеличивается медленнее, поскольку космическое расширение замедляется гравитацией. Области, которые не могут взаимодействовать сегодня, смогут влиять друг на друга в будущем, когда свет покроет наконец разделяющее их расстояние. Но в прошлом пройденное светом расстояние становится еще короче, чем надо, так что, если области не могут взаимодействовать сегодня, они тем более не были способны к этому раньше. Корень проблемы, таким образом, связан с притягивающей природой гравитации, из-за которой расширение постепенно замедляется.

Однако во вселенной с ложным вакуумом гравитация отталкивающая, и вместо того, чтобы замедлять расширение, она ускоряет его. При этом положение меняется на противоположное: области, которые могут обмениваться световыми сигналами, в будущем потеряют эту возможность. И, что более важно, те области, которые сегодня недосягаемы друг для друга, должны были взаимодействовать в прошлом. Проблема горизонта исчезает!

Проблема плоского пространства разрешается столь же легко. Оказывается, что Вселенная удаляется от критической плотности, только если ее расширение замедляется. В случае ускоренного инфляционного расширения все обстоит наоборот: Вселенная приближается к критической плотности, а значит, становится более плоской. Поскольку инфляция увеличивает Вселенную в колоссальное число раз, нам видна лишь крошечная ее часть. Эта наблюдаемая область выглядит плоской подобно нашей Земле, которая тоже кажется плоской, если смотреть на нее, находясь вблизи поверхности. Итак, короткий период инфляции делает Вселенную большой, горячей, однородной и плоской, создавая как раз такие начальные условия, которые требуются для стандартной космологии Большого взрыва...