Электрический ток в полупроводниках. Собственная и примесная проводимости

Полупроводники́ - материалы, по своей удельной проводимости занимающие промежуточное место между проводниками и диэлектриками. В природе они существуют в виде элементов(4,5,6 групп), например, Si, Ge, As, Se, и химических соединений сульфидов, оксидов и т.д.

Различают собственные (чистые) и примесные полупроводники.

При нагревании до температуры Т >0 К, а также освещении или облучении электронные (ковалентные) связи могут разрываться что приводит к образованию свободных электронов.В месте разрыва ковалентной связи возникает вакантное для электрона место - дырка, которая соответствует положительному заряду. Дырку могут занять либо электроны соседних ковалентных связей, либо свободный электрон. Вследствие этого она начинает перемещаться по кристаллу. С увеличением температуры возрастает число свободных электронов (больше разрывается связей) и соответственно дырок.

При создании в таком полупроводнике электрического поля включением его в электрическую проводящую цепь возникнет направленное перемещение электронов и дырок, то есть пойдет электрический ток.

Таким образом, в чистых полупроводниках при обычных условиях всегда есть равное число свободных электронов и дырок, которые и обусловливают собственную электропроводность полупроводника. Собственная проводимость - проводимость собственных(чистых) полупроводников(Ge, Se, GaAs).

С точки зрения квантовой (зонной) теории полупроводники имеют, кроме валентной зоны (I) и зоны проводимости (3). запрещенную зону (2), значения энергии которой электроны иметь не могут.

При T = 0 К валентная зона полностью заполнена электронами и, ширина запрещенной зоны, невелика, энергетические уровни зоны проводимости свободны. Если электроны получают энергию при нагревании полупроводника или энергию электромагнитного поля, при облучении светом или радиоактивными излучениями, то электроны способны перейти в зону проводимости (рис 3) становясь свободными. При этом в валентной зоне возникают дырки Полупроводник способен проводить ток, носителями которою будут электроны и дырки. Противоречий между классическими представлениями и квантовыми нет.

Итак, ток собственной проводимости полупроводника складывается из тока электронов и дырок.

Примесная проводимость полупроводников

В зависимости от природы примеси примесная проводимость может быть двух типов: n-типа - электронная, р-типа - дырочная. Проводимость n-типа образуется в случае, когда к основному полупроводнику (например, кремнию) прибавляется небольшое количество примеси, имеющей большую валентность (например, мышьяк). Тогда при построении кристаллической решетки у атома примеси будет лишний электрон. К электронам собственной проводимости добавятся электроны примеси. Но этой причине концентрация электронов будет значительно больше, чем дырок. Основными носителями тока будут электроны (их много), а неосновными - дырки (их мало). Такая проводимость примесного полупроводника получила название n-типа (электронная), так как примесь является донором (поставщиком) электронов. В случае, когда примесь имеет меньшую валентность, чем основной полупроводник (например, кремний Si) с бором B , то при построении решетки у атомов бора не будет хватать одного электрона. Появится незаполненная связь дырка. В примесном полупроводнике концентрация дырок будет значительно больше, чем электронов. Такой тип примесной проводимости назвали p-типом (дырочная) , так как примесь является собирателем (акцептором) электронов. Наличие даже небольшого количества примеси увеличивает проводимость полупроводника в миллионы раз, поэтому ток в примесном полупроводнике образуется в основном либо электронами, либо дырками.

Квантовая теория объясняет образование примесных полупроводников различными положениями энергетических уровней доноров и акцепторов (примесей) по отношению к валентной зоне (1) проводимости (3) в кристалле полупроводника. Энергетические уровни донора близки к уровням зоны проводимости. Электроны легко переходят в неё, не образуя в валентной зоне дырок. Основными носителями будут электроны(n-тип). Энергетические уровни акцептора лежат, ближе к валентной зоне, поэтому электронам валентной зоны легко перейти из нее, образуя в ней дырки. Основными носителями будут дырки (проводимость р-типа).

Полупровдниковые диоды

В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n–p-переход) – это область контакта двух полупроводников с разными типами проводимости. При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис. 1.14.1). Пограничная область раздела полупроводников с разными типами проводимости (так называемый запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение U з

n–p-переход обладает удивительным свойством односторонней проводимости.

Образование запирающего слоя при контакте полупроводников p- и n- типов

Если полупроводник с n–p-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от n–p-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через n–p-переход практически не идет. Напряжение, поданное на n–p-переход в этом случае называют обратным. Весьма незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в p-области и дырок в n-области.

Если n–p-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать n–p-переход, создавая ток в прямом направлении. Сила тока через n–p-переход в этом случае будет возрастать при увеличении напряжения источника.

Способность n–p-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами . Полупроводниковые диоды изготавливают из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

Полупроводниковые диоды используются в выпрямителях для преобразования переменного тока в постоянный.

Электропроводность п-р -перехода сильно зависит от температуры, поэтому обратный ток с повышением температуры увеличивается:

Таким образом, n-p переход обладает односторонней электропроводностью. Это его основное свойство, которое положено в основу устройства и принципа действия полупроводниковою диода.

Диод представляет собой электронно-дырочный переход, защищенный от действия света и электромагнитных излучений металлическим кожухом и имеющий радиатор для температурной стабилизации.

Плюсы: высокий кпд(98%), длительный срок службы, прочность.

Минусы: зависимость от температуры.

§ 3 Собственная проводимость полупроводников

  • Внутренняя структура полупроводников.

К полупроводникам относится большое количество веществ, которые занимают по своим электрическим свойствам промежуточное положение между проводниками и диэлектриками. Для полупроводников j=1 2 ¸ 1 0 - 8 См/м (j - удельная электропроводимость). Для проводников j = 1 4 ¸ 1 0 3 См/м; для диэлектриков j < 10 -12 См/м. Важнейшим свойством и признаком полупроводников является зависимость их электрических свойств от внешних условий Т , Е , р и т.д. Характерная особенность полупроводников заключается в уменьшении их удельного сопротивления с увеличением температуры. Для полупроводников характерно кристаллическое строение с ковалентной связью между атомами.

  • Собственная проводимость полупроводников.

Под действием внешних факторов некоторые валентные электроны атомов приобретает энергию, достаточную для освобождения от ковалентных связей.

Выход из ковалентной связи электрона на энергетической диаграмме соответствует переходу из валентной зоны в зону проводимости. При освобождении электрона из ковалентной связи в последней возникает как бы свободное место, обладающее элементарным положительным зарядом, равным по абсолютной величине заряду электрона. Такое освободившееся в электронной связи место условно назвали дыркой, а процесс образования пары получил название генерация зарядов . Дырка, обладая положительны зарядом, присоединяет к себе электрон соседней заполненной ковалентной связи. В результате этого восстанавливается одна связь (этот процесс называется рекомбинацией ) и разрушается соседняя. Тогда можно говорить о перемещении положительного заряда - дырки по кристаллу. Если на кристалл действует электрическое поле, движение электронов и дырок становится упорядоченным и в кристалле возникает электрический ток. При этом дырочную проводимость называют проводимостью р -типа (positive - положительный), а электронную проводимостью n -типа (negative - отрицательной).

В химически чистом кристалле полупроводник (число примесей 10 16 м -3), число дырок всегда равно числу свободных электронов и электрический ток в нем образуется в результате одновременного переноса заряда обоих знаков. Такая электронно-дырочная проводимость называется собственной проводимостью полупроводника.

j = j n + j p

j - плотность тока электронов (n ) и дырок (р ).

В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны. Так как энергия активации , равная ширине запрещенной зоны идет на перевод электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости и одновременно на появление дырки в валентной зоне. Т.е. энергия, затраченная на образование пары носителей тока делится на две равные части, и таким образом начало отсчета для каждого из этих процессов (переход электрона на рождение дырки) должно находится в середине запрещенной зоны.

Количество электронов, перешедших в зону проводимости и количество образовавшихся дырок ~

таким образом, удельная проводимость собственных полупроводников

γ - постоянная, определяемая видом вещества.

Т.е. с увеличением Т γ увеличивается, так как с точки зрения зонной теории возрастает число электронов, которые в следствии теплового возбуждения переходят в зону проводимости.

,

т.е.

По наклону линии lnγ можно определить ширину запрещенной зоны D E .

§ 4 Примесная проводимость полупроводников

В полупроводниках, содержащих примесь, электропроводимость слагается из собственной и примесной.

Проводимость , вызванная присутствием в кристалле полупроводника примесей из атомов с иной валентностью называется примесной. Примеси, вызывающие в полупроводнике увеличение свободных электронов, называются донорными, а вызывающие увеличение дырок - акцепторными .

Различное действие примесных атомов объясняется следующим образом. Предположим, что в кристалл германия (Ge 4+ ) атомы которого имеют 4 валентных электрона, введем пятивалентный мышьяк As 5+ . В этом случае атомы мышьяка своими 4-я из пяти валентными электронами вступают в связь. 5-й валентный электрон мышьяка окажется не связанным, т.е. становится свободным электроном. Полупроводник, электропроводимость которых повысилась благодаря образованию избытка свободных электронов при введении примеси, называются полупроводниками с электронной проводимостью (полупроводник n -типа), а примесь донорной (отдающей электрон).

Введение в 4-х валентный полупроводник 3-х валентного элемента, например (In 3+ ) индия приводит, наоборот, к избытку дырок над свободными электронами. В этом случае ковалентные связи не будут полностью завершены и образовавшиеся дырки могут перемещаться по кристаллу, создавая дырочную проводимость. Полупроводники, электропроводимость которых обусловлена в основном движением дырок, называется полупроводниками с дырочной проводимостью или полупроводниками р -типа, а примесь - акцепторной (захватывающие электрон из ковалентной связи или из валентной зоны). Энергетические уровни этих примесей называются акцепторными уровнями - расположены над валентной зоной.

Энергетические уровни донорных примесей называются донорными уровнями - расположены под нижним уровнем зоны проводимости.

В примесных полупроводниках носители заряда бывают основными (электроны в проводнике n -типа) и не основными (дырки в полупроводнике р -типа, электроны в полупроводнике n -типа).

Наличие примесных уровней в полупроводниках существенно изменяет положение уровня Ферми Е F . В полупроводнике n -типа при Т = 0 К Е F расположен посередине между дном зоны проводимости и донорным уровнем. С возрастанием Т все большее число электронов переходит с донорного уровня в зону проводимости, но из-за теплового возбуждения часть электронов из валентной зоны переходит в зону проводимости. Поэтому с возрастанием Т уровень Ферми смещается вниз к середине запрещенной зоны.

У полупроводников р -типа при Т = 0 К , Е F посередине между акцепторным уровнем и потолком валентной зоны. С возрастанием Т Е F смещается к середине запрещенной зоны.

Зависимость проводимости полупроводников от температуры имеет вид, показанный на рисунке (подробнее смотрите лабораторную работу 8.6.).

Собственная проводимость полупроводников

В полупроводниках основная зона разделена с зоной возбужденных уровней конечным интервалом энергий ($\triangle E$). Основную зону полупроводника называют валентной зоной, зону возбужденных состояний -- зоной проводимости. При T=0 К валентная зона заполнена целиком, при этом зона проводимости свободна. Следовательно, вблизи абсолютного нуля полупроводники не проводят ток. Вообще говоря, диэлектрики и полупроводники отличаются с точки зрения зонной теории, только шириной запрещенной зоны ($\triangle E$). Условно к диэлектрикам относят полупроводники у которых $\triangle E>2эВ.$

Примечание 1

У полупроводников с повышением температуры электроны обмениваются энергией с ионами кристаллической решетки. Из-за этого электрон может обрести добавочную кинетическую энергию размера $\approx kT.\ $Этой энергии может хватить для того, чтобы некоторую часть электронов перевести в зону проводимости. Эти электроны в зоне проводимости проводят ток.

В валентной зоне освобождаются квантовые состояния, которые не заняты электронами. Такие состояния получили названия дырок. Дырки являются носителями тока. Электроны могут рекомбинировать с дырками (совершать квантовые переходы в незаполненные состояния, то есть дырки). Прежние заполненные состояния в этом случае освобождаются, то есть становятся дырками. Последние рекомбинируют с новыми электронами, вновь образуются дырки. В результате этих процессов устанавливается равновесная концентрация дырок, эта концентрация одинакова по всему объему проводника, если нет внешнего поля. Квантовый переход электрона сопровождается его перемещением против поля. Он уменьшает потенциальную энергию системы. Переход, связанный с перемещение в направлении поля увеличивает потенциальную энергию системы. Переходы против поля преобладают над переходами по полю, что значит, через полупроводник начнет течь ток в направлении приложенного электрического поля. В незамкнутом полупроводнике ток будет течь, пока электрическое поле не будет компенсировать внешнее поле. Конечный результат явления такой же, как если бы носителями тока были не электроны, а положительно заряженные дырки. Следовательно, различают электронную и дырочную проводимость полупроводников.

Истинными носителями тока в металлах и полупроводниках реальны электроны, дырки введены формально. Дырок, как реально существующих положительно заряженных частиц не существует. Однако, оказалось, что в электрическом поле дырки перемещаются так, как двигались бы при классическом рассмотрении положительно заряженные частицы. Из-за небольшой концентрации электронов в зоне проводимости, дырок в валентной зоне можно применять классическую статистику Больцмана.

Примечание 2

Проводимость полупроводников, и электронная, и дырочная не связана с наличием примесей. Она называется собственной электропроводностью полупроводников.

В идеально чистом полупроводнике без всяких примесей каждому освобожденному тепловым движением или светом электрону соответствовало бы образование одной дырки, то есть количество электронов и дырок, которые участвуют в создании тока, было бы одинаково.

Идеально чистые полупроводники в природе не существуют, изготовить из искусственно крайне сложно. Малые следы примесей качественным образом изменяют свойства полупроводников.

Примесная проводимость полупроводников

Электрическая проводимость полупроводников, которая вызвана наличием примесей атомов других химических элементов, называется примесной электрической проводимостью. Самые небольшие количества примесей могу существенно увеличивать проводимость полупроводников. В металлах, наблюдается обратное явление. Примеси всегда уменьшают проводимость металлов.

Увеличение проводимости при наличии примесей объясняют тем, что в полупроводниках появляются дополнительные энергетические уровни, которые находятся в запрещенной зоне полупроводника.

Донорные примеси

Пусть дополнительные уровни в запрещенной зоне появились около нижнего края зоны проводимости. В том случае, если интервал энергии, который отделяет дополнительные уровни энергии от зоны проводимости, мал в сравнении с шириной запрещенной зоны, то число электронов в зоне проводимости, следовательно, сама проводимость полупроводника увеличится. Примеси, которые поставляют электроны в зону проводимости, называют донорами (донорными примесями). Дополнительные энергоуровни, при этом, называют донорными уровнями.

Полупроводники, имеющие донорные примеси называют электронными (полупроводниками n-типа).

Акцепторные примеси

Пусть с введением примеси добавочные уровни возникают около верхнего края валентной зоны. В этом случае электроны из валентной зоны переходят на эти добавочные уровни. В валентной зоне при этом появляются дырки, так возникает дырочная электропроводность полупроводника. Такие примеси называют акцепторами (акцепторными примесями). Дополнительные уровни при этом называют акцепторными уровнями.

Полупроводники, имеющие акцепторные примеси называют дырочными (полупроводниками p-типа). Могут существовать смешанные полупроводники.

Каким видом проводимости обладает полупроводник (электронной или дырочной) судят по знаку эффекта Холла.

Процесс введения примесей называется легированием. При очень больших концентрациях примесных уровней может наблюдаться расщепление примесных уровней, в результате чего они могут перекрыть границы соответствующих энергетических зон.

Пример 1

Задание: Объясните, каким типом примеси могут служить атомы мышьяка, атомы бора в кристаллической решетке кремния?

Рассмотрим кремний и мышьяк. Кремний -- четырехвалентный атом, следовательно, атом кремния имеет четыре электрона. Мышьяк пятивалентен, значит, его атом содержит пять электронов. Пятый электрон может отщепиться от атома мышьяка из-за теплового движения. Положительный ион мышьяка может вытеснить из решетки один из атомов кремния, встав не его место. Так, между узлами решетки появится электрон проводимости. Следовательно, получается, что мышьяк является донорной примесью для кремния.

Рассмотрим бор, как примесь к кремнию. Наружная оболочка атома бора имеет три электрона. Атом бора может захватить недостающий четвертый электрон, из какого -- либо соседнего с ним места кристалла кремния. В этом месте появляется дырка, а появившийся отрицательный ион бора может вытеснить из кристаллической решетки атом кремния и занять его место. В кристалле кремния возникает дырочная проводимость. Бор -- акцепторная примесь.

Ответ: Мышьяк -- донорная примесь в решетке кремния, бор -- акцепторная примесь для кремния.

Пример 2

Задание: В термоэлементах в одних случаях ток в горячем спае течет от металла к полупроводнику, а в других от полупроводника к металлу, объясните, почему?

Именно различие между электронной и дырочной проводимостью полупроводников объяснятся процесс, описанный в условии задания.

В электронном полупроводнике скорость электронов в горячем конце больше, чем в холодном. Следовательно, электроны просачиваются (диффундируют) от горячего конца к холодному до тех пор, пока возникающее из-за перераспределения зарядов электрическое поле не останавливает поток диффундирующих электронов. После установления равновесия горячий конец, который потерял электроны, имеет положительный заряд, холодный конец, получил избыток электронов, следовательно, имеет отрицательный заряд. Значит, между горячим и холодным концами появляется разность потенциалов (положительная).

В дырочном полупроводнике происходит обратный процесс. Диффузия дырок проходит от горячего конца к холодному. При этом горячий конец получает отрицательный заряд, холодный конец заряжается положительно. Знак разности потенциалов между горячим и холодным концами отрицательный.

Полупроводниками являются твердые тела, которые при абсолютном нуле температур характеризуются полностью занятой электронами валентной зоной, отделенной от зоны проводимости сравнительно узкой (DW< 1эв) запрещенной зоной.

Различают собственные и примесные полупроводники. Собственными являются химически чистые полупроводники, а их проводимость называется собственной проводимостью.

Типичными, наиболее широко распространенными собственными полупроводниками являются химические элементы германий и кремний. Внешние оболочки их атомов содержат по 4 валентных электрона, которые связаны с валентными электронами соседних атомов ковалентными связями.

Упрощенная плоская схема расположения атомов в кристалле германия дана на рис. 3, где каждая черточка означает связь, осуществляемую одним электроном. В идеальном кристалле при нуле Кельвина такая структура ведет себя как диэлектрик, так как все валентные электроны участвуют в образовании связей, и, следовательно, не участвуют в проводимости.

При повышении температуры тепловые колебания решетки могут привести к разрыву некоторых валентных связей, в результате чего часть электронов отщепляется и они становятся свободными. В покинутом электроном месте возникает вакансия – дырка, заполнить которую могут электроны из соседней пары. В результате дырка, как и освободившийся электрон, будет перемещаться по кристаллу. Движение электронов проводимости и дырок в отсутствии электрического поля является хаотическим. Если же кристалл поместить в электрическое поле, то электроны начнут двигаться против поля, дырки – по полю, что приведет к собственной проводимости германия, обусловленной как электронами, так и дырками.

Согласно зонной теории, энергия DW, необходимая для перехода электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости, называется энергией активации (рис. 4).

Переход электронов из заполненной валентной зоны в свободную зону создает в валентной зоне вакантные состояния – дырки (отмечены кружками на рис. 4). Такая дырка ведёт себя подобно частице с элементарным положительным зарядом. Под действием внешнего электрического поля одновременно с перемещением электронов вверх по энергетическим уровням зоны проводимости происходит заполнение вакантных состояний в валентной зоне электронами с нижележащих уровней этой зоны, эквивалентное перемещение положительных дырок вниз.

Таким образом, в полупроводниках можно говорить об электронном и дырочном типах проводимости, хотя оба они являются следствием перемещения электронов.

Проводимость собственных полупроводников, обусловленная движением электронов, называется электронной проводимостью или проводимостью п– типа (от лат. negativus – отрицательный).



Проводимость собственных полупроводников, обусловленная квазичастицами – дырками, называется дырочной проводимостью или проводимостью р –типа (от лат. рositivus – положительный).

Таким образом, в собственных полупроводниках наблюдается два механизма проводимости – электронный и дырочный. При этом число электронов проводимости равно числу дырок в данном полупроводнике.

Проводимость химически чистых полупроводников, обусловленная наличием в них электронов и дырок, называется собственной проводимостью, а сами полупроводники – собственными полупроводниками.

С повышением температуры количество электронов, преодолевших за счет энергии теплового движения запрещенную зону, растет, соответственно увеличивается и число дырок. Следовательно, с ростом температуры собственная проводимость полупроводников увеличивается, а сопротивление уменьшается по экспоненциальному закону:

где - удельная проводимость, - некоторая константа, постоянная для данного полупроводника, - энергия активации, равная ширине запретной зоны и различная для разных полупроводников, k=1,38×10 -23 - постоянная Больцмана.

Зависимость сопротивления полупроводников от температуры используется в высокоточных приборах для измерения температуры – термисторах. Термисторы широко применяются для измерения температуры газов и жидкостей, для быстрой сигнализации о перегреве отдельных частей агрегатов, недостаточной смазке и т. д.

Примесная проводимость полупроводников

Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники – примесными полупроводниками.

Необходимо различать донорные и акцепторные примеси. Примеси, у которых валентных электронов на единицу больше, чем у атомов основного вещества, называются донорными.

Рассмотрим механизм донорной примесной проводимости на примере германия. При замещении атома германия атомом, валентность которого на единицу больше, например, пятивалентным атомом мышьяка , один из электронов атома мышьяка не может образовать ковалентной связи, он оказывается лишним и при тепловых колебаниях решетки может быть легко отщеплен от атома, т. е. стать свободным. При наложении электрического поля такие электроны начинают перемещаться по кристаллу, создавая электрический ток (рис. 5). С точки зрения зонной теории, рассмотренный процесс можно представить следующим образом. Введение донорной примеси искажает поле решетки и приводит к появлению дополнительных донорных уровней (рис. 6), которые располагаются в запрещенной зоне вблизи дна зоны проводимости. Эти уровни заняты донорными электронами. При температуре, близкой к абсолютному нулю, энергия теплового движения недостаточна для того, чтобы перевести донорные электроны в зону проводимости, и полупроводник ведет себя как изолятор. При повышении температуры, воздействии света и т. д. электроны переходят с донорных уровней в зону проводимости и, при наличии разности потенциалов, обеспечивают ток.

Проводимость полупроводника, обусловленная наличием в нём электронов донорной примеси, называется электронной, донорной или n -типа, а сам полупроводник – полупроводником n-типа .

Примесь, у атомов которой не хватает достаточного количества электронов, чтобы заместить все валентные связи в решетке основного вещества, называется акцепторной.

При введении в решетку германия примесного атома с тремя валентными электронами, например, бора В , для образования связей с четырьмя ближайшими соседними атомами германия у атома бора не хватает одного электрона, одна из связей остается неукомплектованной и четвертый электрон может быть захвачен от соседнего атома германия, где, соответственно, образуется дырка (рис. 7). Последовательное заполнение образующихся дырок электронами эквивалентно движению дырок в полупроводнике, т. е. дырки не остаются локализованными, а перемещаются в решетке германия как свободные положительные заряды.

При введении в полупроводник акцепторной примеси свободные примесные уровни располагаются в запрещенной зоне вблизи верхней границы валентной зоны (рис. 8). Под действием очень малой энергии теплового возбуждения атом примеси может отнять электрон у одного из своих ближайших соседей. Это означает, что часть электронов из валентной зоны уже при небольших температурах переходит на акцепторные уровни, а в валентной зоне появляются свободные дырки. В этом случае полупроводник приобретает дырочную проводимость или проводимость p -типа.

Для перехода с донорного уровня в зону проводимости или из валентной зоны на акцепторный уровень (рис. 6, 8) требуется меньшая энергия, чем для перехода электрона из валентной зоны в зону проводимости. Поэтому при низких температурах основную роль играет примесная проводимость.

С ростом температуры в электронном полупроводнике, кроме свободных электронов, появляется некоторое количество свободных дырок, а в дырочном полупроводнике появляется некоторое количество свободных электронов. Носители заряда, число которых преобладает в кристалле, называются основными носителями; носители противоположного знака называются неосновными. В полупроводниках с донорной примесью основными носителями являются электроны, неосновными – дырки. В полупроводниках с акцепторной примесью основными носителями являются дырки, а неосновными – электроны. Причиной появления неосновных носителей является собственная проводимость.

Введение в кристаллическую решетку полупроводников примесей приводит к появлению в них замечательных и ценных для практического использования свойств: резкого повышение электропроводности, фотопроводности, люминесценции и т. п. Полупроводники используются в электро- и радиотехнической аппаратуре (кристаллические диоды и триоды), служат выпрямителями (селеновые, купроксные). Из полупроводников изготовляют полупроводниковые сопротивления (термисторы, фотосопротивления), источники света (светодиоды, лазеры), источники э.д.с. (солнечные батареи) и др. Полупроводниковые приборы малогабаритны, что является их важным достоинством.

Принцип действия многих полупроводниковых приборов основан на работе р-n– перехода.

6. . 7. . 8. .

Полупроводники - это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5-2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объяснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительнго иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов связанных электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном - «дырки». Внешне этот процесс хаотического перемещения связанных электронов воспринимается как перемещение поло-жительного заряда. При помещении кристалла в элек¬трическое поле возникает упорядоченное движение «дырок» - дырочный ток проводимости.

В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается.

На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Донорная примесь - это примесь с большей, чем у кристалла, валентностью. При добавлении такой примеси в полупроводнике образуются дополнительные свободные электроны. Именно поэтому примесь называется донорной. Преобладает электронная проводимость, а полупроводник называют полупроводником n-типа . Например, для кремния с валентностью n = 4 донорной примесью является мышьяк с валентностью n = 5. Каждый атом примеси мышьяка приведет к образованию одного электрона проводимости.

Акцепторная примесь - это примесь с меньшей чем у кристалла валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Преобладает «дырочная» проводимость, а полупроводник называют полупроводником p-типа . Например, для кремния акцепторной примесью является индий с валентностью n = 3. Каждый атом индия приведет к образованию лишней «дырки».

Принцип действия большинства полупроводниковых приборов основан на свойствах р-n-перехода . При приведении в контакт двух полупроводниковых приборов р-типа и n-типа в месте контакта начинается диффузия электронов из n-области в p-область, а «дырок» - наоборот, из р- в n-область. Этот процесс будет не бесконечным во времени, так как образуется запирающий слой , который будет препятствовать дальнейшей диффузии электронов и «дырок».

р-n-Контакт полупроводников, подобно вакуумному диоду, обладает односторонней проводимостью: если к р-области подключить «+» источника тока, а к n-области «-» источника тока, то запирающий слой разрушится и р-n-контакт будет проводить ток, электроны из n-области пойдут в p-область, а «дырки» из p-области в n-область (рис. 22). В первом случае ток не равен нулю, во втором - ток равен нулю. Это означает, что если к р-области подключить «-» источника, а к n-области - «+» источника тока, то запирающий слой расширится и тока не будет.

Полупроводниковый диод состоит из контакта двух полупроводников р- и n-типа. Полупроводниковые диоды имеют небольшие размеры и массу, длительный срок службы, высокую механическую прочность, высокий коэффициент полезного действия; их недостатком является зависимость сопротивления от температуры.

В радиоэлектронике применяется также еще один полупроводниковый прибор: транзистор , который был изобретен в 1948 г. В основе триода лежит не один, а два р-n-перехода. Основное применение транзистора - это использование его в качестве усилителя слабых сигналов по току и напряжению, а полупроводниковый диод применяется в качестве выпрямителя тока.

После открытия транзистора наступил качественно новый этап развития электроники - микроэлектроники, поднявший на качественно иную ступень развитие электронной техники, систем связи, автоматики. Микроэлектроника занимается разработкой интегральных микросхем и принципов их применения. Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов - транзисторов, диодов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе. В результате этого процесса на одном кристалле одновременно создается несколько тысяч транзисторов, конденсаторов, резисторов и диодов, до 3500 элементов. Размеры отдельных элементов микросхемы могут быть 2-5 мкм, погрешность при их нанесении не должна превышать 0,2 мкм. Микропроцессор современной ЭВМ, размещенный на. кристалле кремния размером 6x6 мм, содержит несколько десятков или даже сотен тысяч транзисторов.

Однако в технике применяются также полупроводниковые приборы без р-n-перехода. Например, терморезисторы (для измерения температуры), фоторезисторы (в фотореле, аварийных выключателях, в дистанционных управлениях телевизорами и видео-магнитофонами) .