Кто открыл генетику. История развития генетики (кратко)

Многие считают, чтосамый интересный раздел генетики — генетика человека — наука о наследствен-ности и изменчивости признаков у человека. И действительно, именно в этой области разворачиваются жаркие научные дискуссии и именно здесь используются самые современные научные методы и технологии.

Человек подчиняется тем же закономерностям наследования, что и любое животное с половым способом размножения. Генетический аппарат человека такой же, как и у других обитателей Земли. Его основу состав-ляет ДНК, на которой синтезируется РНК, которая, в свою очередь, слу-жит для биосинтеза белков; всё многообразие генов построено с участием четырёх нуклеотидов; генетическая информация считывается триплетами. Более того, некоторые гены у совсем не родственных видов живых орга-низмов полностью идентичны. Трудно представить, но у человека и банана ровно половина всех структурных генов — одинаковы! А сходство челове-ка и шимпанзе составляет 98,7 % генов. Причём одинаковыми являются не только нормально функционирующие гены, но и псевдогены — участки хромосомы, похожие на структурный ген, но содержащие «печатные ошиб-ки», которые делают их не функционирующими.

Относительно генетического сходства всех живых организмов существует одно остроумное сравнение. Представьте себе, что два соседа по парте написали сочинения, в которых одинаковыми являются не только содержание, но даже допущенные ошибки. Сочинения на три тетрадных листочка отличаются только одним словом в тексте. Ясно, что ученики списали свои сочинения один у другого или из одной и той же книжки, Именно такое чрезвычайное сходство строения «святая святых» — аппарата наследственности и является неопровержимым доказательством единства происхождения всего живого на нашей планете.

Наследование признаков у человека подчиняется законам и правилам генетики: законам Менделя, Моргана, сцепления генов, взаимодействия аллельных и неаллельных генов (табл. 1, 2). Однако поскольку чело-век — это не только биологическое, но и социальное существо, то генети-ческие исследования вида Homo sapiens отличаются рядом особенностей:

  • для изучения наследования признаков у человека нельзя, как например у лабораторных мышей, применять гибридологический анализ (метод скрещиваний): люди не желают давать потомство по указаниям экспери-ментатора. Поэтому для изучения результатов гибридизации у человека используют опосредованный генеалогический метод (рис. 69);
  • человеку присущи признаки, не встречающиеся у других организмов: темперамент, математические, изобразительные, музыкальные и другие способности, наследование которых — интереснейшая часть генетики человека;
  • благодаря общественной поддержке и медицине возможно выживание и существование людей с явными отклонениями от нормы (в дикой приро-де такие организмы сразу же гибнут).

Таблица 1. Некоторые доминантные и рецессивные признаки в человеческом организме

Признак Доминантный Рецессивный
Размер глаз Большие Маленькие
Цвет глаз Карие Голубые
Тип глаз Монголоидный Европеоидный
Разрез глаз Прямой Раскосый
Зрение Близорукость Норма
Косоглазие Есть Нет
Подбородок Широкий Острый
Подбородок Длинный Короткий
Ямка на подбородке Есть Нет
Форма губ Широкие Тонкие
Веснушки Есть Нет
Густота бровей Густые широкие Редкие узкие
Форма бровей Соединяются на переносице Не соединяются на переносице
Ресницы Длинные Короткие
Форма носа Круглый Острый
Форма носа Прямой Курносый
Величина носа Большой Нормальный
Переносица С горбинкой Прямая
Мысок волос на голове Есть Нет
Структура волос Жёсткие Мягкие
Цвет волос Тёмный Светлый
Голос у женщины Сопрано Альт
Голос у мужчины Бас Тенор
Рост Низкий Высокий
Количество пальцев Многопалость Пятипалость
Группа крови II, III, IV 1
Резус-фактор крови Положительный Отрицательный
Цвет кожи Смуглый Светлый
Структура кожи Толстая Тонкая
Ведущая рука Левая Правая
Форма лица Круглая Продолговатая

Таблица 2. Признаки с неполным доминированием у человека Материал с сайта

Признак Доминантный фенотип Гетерозигот-ный фенотип Рецессивный фенотип
Размер носа Большой Средний Маленький
Размер рта Большой Средний Маленький
Размер глаз Большие Средние Маленькие
Расстояние между глазами Большое Среднее Маленькое
Цвет бровей Очень тёмные Тёмные Светлые
Курчавость Волос Курчавые Кудрявые Прямые

Генетика человека — наука о наследственности и измен-чивости признаков у человека. Изучение генома человека однозначно подтвердило его эволюционное происхожде-ние. В генетике человека невозможно применить некоторые традиционные генетические методы, в частности гибридоло-гический. На генетические процессы, протекающие в популя-циях людей, накладывают отпечаток и социальные факторы.

Медицинская генетика — наука о наследственных аспектах медицинских проблем. Существуют наследственные болезни и болезни с наследственной предрасположенностью. Наследственные заболевания делят на генные, хромосомные и геномные патологии.

На этой странице материал по темам:

  • Генетика человека краткий доклад

  • Сообщение на тему генетика человека кратко

  • История исследование генетики человека

  • Генетика доклад коротко

  • Шпаргалка конспект по генетики

Вопросы по этому материалу:

Содержание статьи

ГЕНЕТИКА, наука, изучающая наследственность и изменчивость – свойства, присущие всем живым организмам. Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу. При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ – быть похожими на своих родителей и отличаться от них – и составляют суть понятий «наследственность» и «изменчивость».

Истоки генетики

Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 19 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности – это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения «полукровка», «чистокровный» и др. сохранились до наших дней.

Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха. Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то «странных» количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки – генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки.

Законы генетики

Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену. Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина – другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм.

Гены – это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом. У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой – от отца. Имеются и внеядерные гены (в митохондриях, а у растений – еще и в хлоропластах).

Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз – это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития. Мейоз – это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток). В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине – другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом – образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.

Методические подходы.

Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.). Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал. Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков – гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила – Drosophila melanogaster . На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген – сложная структура и имеется много форм (аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации – включение ДНК, принадлежащей клетке донора, в клетку реципиента – и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. (см . КЛЕТКА; НАСЛЕДСТВЕННОСТЬ; МОЛЕКУЛЯРНАЯ БИОЛОГИЯ) . Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов – от вирусов до человека.

Достижения и проблемы современной генетики.

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина (см . ГЕННАЯ ИНЖЕНЕРИЯ) . Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930–1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» – трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы (см . ПОПУЛЯЦИОННАЯ ГЕНЕТИКА) , изучать наследственные болезни (см . ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ) , проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Генетика-наука о наследственности и изменчивости организмов. Генетика- дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами. Она призвана раскрыть законы воспроизведения живого по поколениям, появление у организмов новых свойств, законы индивидуального развития особи и материальной основы исторических преобразований организмов в процессе эволюции. Первые две задачи решают теория гена и теория мутаций. Выяснение сущности воспроизведения для конкретного разнообразия форм жизни требует изучения наследственности у представителей, находящихся на разных ступенях эволюционного развития. Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек. На фоне видовой и другой специфики в явлениях наследственности для всех живых существ обнаруживаются общие законы. Их существование показывает единство органического мира. История генетики начинается с 1900 года, когда независимо друг от друга Корренс, Герман и де Фриз открыли и сформулировали законы наследования признаков, когда была переиздана работа Г. Менделя УОпыты над растительными гибридамиФ. С того времени генетика в своем развитии прошла три хорошо очерченных этапа- эпоха Классической генетики (1900-1930), эпоха неоклассицизма (1930-1953) и эпоха синтетической генетики, которая началась в 1953 году. На первом этапе складывался язык генетики, разрабатывались методики исследования, были обоснованы фундаментальные положения, открыты основные законы. В эпоху неоклассицизма стало возможным вмешательство в механизм изменчивости, дальнейшее развитие получило изучение гена и хромосом, разрабатывается теория искусственного мутагенеза, что позволило генетике из теоритической дисциплины перейти к прикладной. Новый этап в развитии генетики стал возможным благодаря расшифровке структуры УзолотойФ молекулы ДНК в 1953 г. Дж. Уотсоном и Ф.Криком. Генетика переходит на молекулярный уровень исследований. Стало возможным расшифровать структуру гена, определить материальные основы и механизмы наследственности и изменчивости. Генетика научилась влиять на эти процессы, направлять их в нужное русло. Появились широкие возможности соединения теории и практики. ОСНОВНЫЕ МЕТОДЫ ГЕНЕТИКИ. Основным методом генетики на протяжении многих лет является гибридологический метод. Гибридизацией называется процесс скрещивания с целью получения гибридов. Гибрид это организм, полученный в результате скрещивания разнородных в генетическом отношении родительских форм. Гибридизация может быть внутривидовой, когда скрещиваются особи одного вида и отдаленной, если скрещиваются особи из различных видов или родов. При исследовании наследования признаков используются методы моногибридного, дигибридного, полигибридного скрещивания, которые были разработаны еще Г. Менделем в его опытах с сортами гороха. При моногибридном скрещивании наследование проводится по одной паре альтернативных признаков, при дигибридном скрещивании- по двум парам альтернативных признаков, при полигибридном скрещивании- по 3,4 и более парам альтернативных признаков. При изучении закономерностей наследования признаков и закономерностей изменчивости широко используется метод искусственного мутагенеза, когда с помощью мутагенов вызывают изменение в генотипе и изучают результаты этого процесса. Широкое распространение в генетике нашел метод искусственного получения полиплоидов, что имеет не только теоретическое, но и практическое значение. Полиплоиды обладают большой урожайностью и меньше поражаются вредителями и болезнями. Широко используется в генетике биометрические методы. Ведь наследуются и изменяются не только качественные, но и количественные. Биометрические методы позволили обосновать положение фенотипа и нормы реакции. С 1953 года особое значение для генетики приобрели биохимические методы исследования. Генетика вплотную занялась изучением материальных основ наследственности и изменчивости - генов. Объектом исследования генетики стали нуклеиновые кислоты, особенно ДНК. Изучение химической структуры гена позволило ответить на главные вопросы, которые ставила перед собой генетика. Как происходит наследование признаков? В результате чего возникают изменения признаков?Законы наследования, установленные Г. Менделем. Доминантные и рецессивные признаки, гомозигота и гетерозигота, фенотип и генотип, аллельные признаки. Гешскому ботанику - любителю Иоганну Грегору Менделю принадлежит открытие количественных закономерностей, сопровождающих формирование гибридов. В работах Г. Менделя (1856-1863) были раскрыты основы законов наследования признаков. В качестве объекта исследования Менделем был выбран горох посевной. На период исследований для этого строго самоопыляющегося растения было известно достаточное количество сортов с четко различными исследуемыми признаками. Выдающимся достижением Г. Менделя явилась разработка методов исследования гибридов. Им было введено понятие моногибридного, дигибридного, полигибридного скрещивания. Мендель впервые осознал, что только начав с самого простого случая - наблюдения за поведением в потомстве одной пары альтернативных признаков- и постепенно усложняя задачу. Можно разобраться в закономерностях наследования признаков. Планирование этапов исследования, математическая обработка полученных данных, позволили Менделю получить результаты, которые легли в основу фундаментальных исследований в области изучения наследственности. Мендель начал с опытов по по моногибридному скрещиванию сортов гороха. Исследование касалось наследованию только одной пары альтернативных признаков (красный венчик-АА*белый венчик-аа). На основании полученных данных Мендель ввел понятие доминантного и рецессивного признака. Доминантным признаком он назвал признак, который переходит в гибридные растения совершенно неизменным или почти неизменным, а рецессивным тот, который становится при гибридизации скрытым. Затем Мендель впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков для случаев моно-,ди-,тригибридного и более сложных скрещиваний. В результате исследований Г.Менделем были получены обоснования следующих обобщений фундаментальной важности: 1. При моногибридном скрещивании наблюдается явление доминирования. 2. В результате последующих скрещиваний гибридов происходит расщепление признаков в соотношении 3:1. 3. Особи содержат либо только доминантные, либо только рецессивные, либо смешанные задатки. Зигота, содержащая смешанные задатки получила название гетерозиготы, а организм, развившейся из гетерозиготы - гетерозиготным. Зигота, содержащая одинаковые(доминантные или рецессивные) задатки называется гомозиготой, а организм, развившейся из гомозиготы-гомозиготным. Мендель вплотную подошел к проблемам соотношения между наследственными задатками и определяемыми ими признаками организма. Внешний вид организма зависти от сочетания наследственных задатков. Этот вывод был им рассмотрен в работе УОпыты над растительными гибридамиФ. Мендель впервые четко сформулировал понятие дискретного наследственного задатка, независящего в своем проявлении от других задатков. Каждая гамета несет по одному задатку. Сумма наследственных задатков организма стала по предложению Иогансена в 1909 году называться генотипом, а внешний вид организма, определяемый генотипом, стал называться фенотипом. Сам наследственный задаток Иогансен позднее назвал геном. Во время оплодотворения гаметы сливаются, формируя зиготу, при этом в зависимости от сорта гамет, зигота получит те или иные наследственные задатки. За счет перекомбинации задатков при скрещиваниях образуются зиготы, несущие новое сочетание задатков, чем и обуславливаются различия между индивидуалами. Это легло в основу фундаментального закона Менделя- закона частоты гамет. Сущность закона заключается в следующем положении- гамет чисты, то есть они содержат по одному наследственному задатку от каждой пары. Пара задатков, сходящихся в гамете была названа аллелем, а сами задатки аллельными. Позднее появился термин аллельные гены, определяющий пару аллельных задатков. Работы Г. Менделя не получили в свое время никого признания и оставались неизвестными вплоть до вторичного переоткрытия законов наследственности К. Корренсом, К.Гермаком и Г. Де Фризом в 1900 году. В том же году Корренсом были сформулированны три закона наследования признаков, которые позднее были названы законами Менделя в честь выдающегося ученого, заложившего основы генетики.Моногибридное скрещивание. Единообразие гибридов первого поколения. Закон расщепления признаков.Цитологические основы единообразия гибридов первого поколения и расщепления признаков во втором поколении. Моногибридное скрещивание-это метод исследования, при котором изучается исследование одной пары альтернативных признаков. Для опытов по моногибридному скрещиванию Мендель выбрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семене круглые или угловатые, семядоли желтые или зеленые, кожура семян серая или белая, семена гладкие или морщинистые, желтые или зеленые, цветки пазушные или верхушечные, растения высокие или карликовые. В течении ряда лет Мендель путем самоопыления отбирал материал для скрещивания, где родители были представлены чистыми линиями, то есть находились в гомозиготном состоянии. Скрещивание показало, что гибриды проявляют только один признак.

Генетика - это наука, изучающая закономерности передачи признаков от родительских особей к потомкам. Эта дисциплина также рассматривает их свойства и способность к изменчивости. При этом в качестве носителей информации выступают особые структуры - гены. В настоящее время наука накопила достаточно информации. Она имеет несколько разделов, каждый из которых обладает своими задачами и объектами исследований. Наиболее важные из разделов: классическая, молекулярная, и

Классическая генетика

Классическая генетика - это наука о наследственности. Это свойство всех организмов передавать во время размножения свои внешние и внутренние признаки потомству. Классическая генетика также занимается изучением изменчивости. Она выражается в нестабильности признаков. Эти изменения накапливаются из поколения в поколение. Только благодаря такому непостоянству организмы могут приспособиться к изменениям в окружающей их среде.

Наследственная информация организмов заключена в генах. В настоящее время их рассматривают с точки зрения молекулярной генетики. Хотя возникли эти понятия еще задолго до появления этого раздела.

Термины «мутация», «ДНК», «хромосомы», «изменчивость» стали известными в процессе многочисленных исследований. Сейчас результаты многовековых опытов кажутся очевидными, но когда-то все начиналось со случайных скрещиваний. Люди стремились получить коров с большими удоями молока, более крупных свиней и овец с густой шерстью. Это были первые, даже не научные, опыты. Однако именно эти предпосылки привели к возникновению такой науки, как классическая генетика. Вплоть до 20-го века скрещивание было единственным известным и доступным методом исследования. Именно результаты классической генетики стали значительным достижением современной науки биологии.

Молекулярная генетика

Это раздел, изучающий все закономерности, которые подчинены процессам на молекулярном уровне. Самое важное свойство всех живых организмов - это наследственность, то есть они способны из поколения в поколение сохранять основные черты строения своего организма, а также схемы протекания обменных процессов и ответов на воздействие различных факторов окружающей среды. Это происходит благодаря тому, что на молекулярном уровне особые вещества записывают и сохраняют всю полученную информацию, а затем передают ее следующим поколениям во время процесса оплодотворения. Открытие этих веществ и последующее их изучение стало возможным благодаря исследованию строения клетки на химическом уровне. Так были открыты нуклеиновые кислоты - основа генетического материала.

Открытие «наследственных молекул»

Современная генетика знает практически все о нуклеиновых кислотах, но, конечно же, так было не всегда. Первое предположение о том, что химические вещества могут быть как-то связаны с наследственностью, было выдвинуто лишь в 19-м веке. Изучением этой проблемы на тот момент занимались биохимик Ф. Мишер и братья-биологи Гертвиги. В 1928 году отечественный ученый Н. К. Кольцов, опираясь на результаты исследований, предположил, что все наследственные свойства живых организмов закодированы и размещены в гигантских «наследственных молекулах». При этом он заявил, что эти молекулы состоят из упорядоченных звеньев, которые, собственно, и являются генами. Это определенно было прорывом. Также Кольцов определил, что данные «наследственные молекулы» упакованы в клетках в особые структуры, названные хромосомами. Впоследствии эта гипотеза нашла свое подтверждение и дала толчок развитию науки в 20-м веке.

Развитие науки в 20-м веке

Развитие генетики и дальнейшие исследования привели к ряду не менее важных открытий. Было установлено, что каждая хромосома в клетке содержит всего одну огромную молекулу ДНК, состоящую из двух нитей. Ее многочисленные отрезки - это гены. Основная их функция заключается в том, что они особым образом кодируют информацию о строении белков-ферментов. Но реализация наследственной информации в определенные признаки протекает при участии другого типа нуклеиновой кислоты - РНК. Она синтезируется на ДНК и снимает копии с генов. Она же переносит информацию на рибосомы, где и происходит синтез ферментных белков. было выяснено в 1953 г., а РНК - в период с 1961 по 1964 год.

С этого времени молекулярная генетика стала развиваться семимильными шагами. Эти открытия стали основой исследований, в результате которых были раскрыты закономерности развертывания наследственной информации. Этот процесс осуществляется на молекулярном уровне в клетках. Также были получены принципиально новые сведения о хранении информации в генах. Со временем было установлено, как происходят механизмы удвоения ДНК перед (репликация), процессы считывания информации молекулой РНК (транскрипция), синтез белков-ферментов (трансляция). Также были обнаружены принципы изменения наследственности и выяснена их роль во внутренней и внешней среде клеток.

Расшифровка структуры ДНК

Методы генетики интенсивно развивались. Важнейшим достижением стала расшифровка хромосомной ДНК. Выяснилось, что существует всего два типа участков цепи. Они отличаются друг от друга расположенностью нуклеотидов. У первого типа каждый участок своеобразен, то есть ему присуща уникальность. Второй же содержал разное количество регулярно повторяющихся последовательностей. Они были названы повторами. В 1973 году был установлен тот факт, что уникальные зоны всегда прерываются определенными генами. Отрезок всегда заканчивается повтором. Этот промежуток кодирует определенные ферментативные белки, именно по ним «ориентируется» РНК при считывании информации с ДНК.

Первые открытия в генной инженерии

Появляющиеся новые методы генетики повлекли за собой дальнейшие открытия. Было выявлено уникальное свойство всей живой материи. Речь идет о способности восстанавливать поврежденные участки в цепи ДНК. Они могут возникать в результате различных негативных воздействий. Способность к самовосстановлению была названа «процессом генетической репарации». В настоящее время многие именитые ученые высказывают достаточно подкрепленные фактами надежды на возможность «выхватывать» определенные гены из клетки. Что это может дать? В первую очередь возможность устранять генетические дефекты. Изучением таких проблем занимается генетическая инженерия.

Процесс репликации

Молекулярная генетика изучает процессы передачи наследственной информации при размножении. Сохранение неизменности записи, кодируемой в генах, обеспечивается точным ее воспроизведением во время деления клеток. Весь механизм данного процесса изучен в деталях. Оказалось, что непосредственно перед тем, как происходит деление в клетке, осуществляется репликация. Это процесс удвоения ДНК. Он сопровождается абсолютно точным копированием первоначальных молекул по правилу комплементарности. Известно, что в составе нити ДНК всего четыре типа нуклеотидов. Это гуанин, аденин, цитозин и тимин. Согласно правилу комплементарности, открытому учеными Ф. Криком и Д. Уотсоном в 1953 году, в структуре двойной цепи ДНК аденину соответствует тимин, а цитидиловому нуклеотиду - гуаниловый. Во время процесса репликации происходит точное копирование каждой цепи ДНК путем подстановки нужного нуклеотида.

Генетика - наука сравнительно молодая. Процесс репликации был изучен лишь в 50-х годах 20-го века. Тогда же был обнаружен фермент ДНК-полимераза. В 70-е годы, после многолетних исследований, было установлено, что репликация - процесс многостадийный. В синтезе молекул ДНК принимают непосредственное участие несколько различных видов ДНК-полимераз.

Генетика и здоровье

Все сведения, связанные с точечным воспроизведением наследственной информации во время процессов широко применяются в современной медицинской практике. Досконально изученные закономерности свойственны как здоровым организмам, так и в случаях патологических изменений в них. Например, доказано и подтверждено опытами, что излечение некоторых болезней может быть достигнуто при влиянии извне на процессы репликации генетического материала и деления Особенно если патология функционирования организма связана с процессами метаболизма. Например, такие заболевания, как рахит и нарушение фосфорного обмена, напрямую вызваны угнетением репликации ДНК. Как же можно изменить такое состояние извне? Уже синтезированы и опробованы лекарственные препараты, стимулирующие угнетенные процессы. Они активизируют репликацию ДНК. Это способствует нормализации и восстановлению патологических состояний, связанных с заболеванием. Но генетические исследования не стоят на месте. С каждым годом получают все больше данных, помогающих не просто излечить, а предотвратить возможную болезнь.

Генетика и лекарственные препараты

Очень многими вопросами здоровья занимается молекулярная генетика. Биология некоторых вирусов и микроорганизмов такова, что их деятельность в организме человека порой приводит к сбою репликации ДНК. Также уже установлено, что причиной некоторых заболеваний является не угнетение этого процесса, а чрезмерная его активность. Прежде всего, это вирусные и бактериальные инфекции. Они обусловлены тем, что в пораженных клетках и тканях начинают ускоренными темпами размножаться патогенные микробы. Также к данной патологии относятся онкологические заболевания.

В настоящее время существует целый ряд лекарственных средств, которые способны подавить репликацию ДНК в клетке. Большую часть из них синтезировали советские ученые. Эти лекарства широко применяются в медицинской практике. К ним относится, например, группа противотуберкулезных препаратов. Существуют и антибиотики, подавляющие процессы репликации и деления патологических и микробных клеток. Они помогают организму быстро справиться с чужеродными агентами, не давая им размножаться. Такие лекарственные препараты обеспечивают отличный лечебный эффект при большинстве серьезных острых инфекций. А особенно широкое применение данные средства нашли при лечении опухолей и новообразований. Это приоритетное направление, которое выбрал институт генетики России. Каждый год появляются новые улучшенные препараты, препятствующие развитию онкологии. Это дает надежду десяткам тысяч больных людей по всему миру.

Процессы транскрипции и трансляции

После того как были проведены опытные лабораторные тесты по генетике и получены результаты о роли ДНК и генов как матриц для синтеза белков, некоторое время ученные высказывали мнение, что аминокислоты собираются в более сложные молекулы тут же, в ядре. Но после получения новых данных стало ясно, что это не так. Аминокислоты не строятся на участках генов в ДНК. Было установлено, что этот сложный процесс протекает в несколько этапов. Сначала с генов снимаются точные копии - информационные РНК. Эти молекулы выходят из ядра клетки и передвигаются к особым структурам - рибосомам. Именно на этих органеллах и происходят сборка аминокислот и синтез белков. Процесс получения копий ДНК получил название «транскрипция». А синтез белков под контролем информационной РНК - «трансляция». Изучение точных механизмов этих процессов и принципов влияния на них - главные современные задачи по генетике молекулярных структур.

Значение механизмов транскрипции и трансляции в медицине

В последние годы стало очевидным, что скрупулезное рассмотрение всех этапов транскрипции и трансляции имеет большое значение для современного здравоохранения. Институт генетики РАН уже давно подтвердил тот факт, что при развитии практически любого заболевания отмечается интенсивный синтез токсических и просто вредных для организма человека белков. Этот процесс может протекать под контролем генов, которые в нормальном состоянии неактивны. Либо это введенный синтез, за который ответственны проникшие в клетки и ткани человека патогенные бактерии и вирусы. Также образование вредных белков могут стимулировать активно развивающиеся онкологические новообразования. Именно поэтому доскональное изучение всех этапов транскрипции и трансляции в настоящее время исключительно важно. Так можно выявить способы борьбы не только с опасными инфекциями, но и с раком.

Современная генетика - это непрерывные поиски механизмов развития заболеваний и лекарственных препаратов для их лечения. Сейчас уже возможно ингибировать процессы трансляции в пораженных органах или организме в целом, тем самым подавить воспаление. В принципе, именно на этом и построено действие большинства известных антибиотиков, например, тетрациклинового или стрептомицинового ряда. Все эти лекарственные препараты выборочно ингибируют в клетках процессы трансляции.

Значение исследования процессов генетической рекомбинации

Очень большое значение для медицины имеет также детальное изучение процессов генетической рекомбинации, которая отвечает за передачу и обмен участков хромосом и отдельных генов. Это важный фактор в развитии инфекционных заболеваний. Генетическая рекомбинация лежит в основе проникновения в клетки человека и внедрения в ДНК чужеродного, чаще вирусного, материала. В результате происходит синтез на рибосомах не «родных» организму белков, а патогенных для него. По этому принципу происходит репродукция в клетках целых колоний вирусов. Методы направлены на разработку средств борьбы с инфекционными заболеваниями и для предотвращения сборки патогенных вирусов. Кроме того, накопление информации о генетической рекомбинации позволило понять принцип обмена генов между организмами, что привело к появлению геномодифицированных растений и животных.

Значение молекулярной генетики для биологии и медицины

За последнее столетие открытия сначала в классической, а потом уже в молекулярной генетике оказали огромное, и даже решающее влияние на прогресс всех биологических наук. Особенно сильно шагнула вперед медицина. Успехи генетических исследований позволили понять некогда непостижимые процессы наследования генетических признаков и развития индивидуальных особенностей человека. Примечательно и то, как быстро эта наука из чисто теоретической переросла в практическую. Она стала важнейшей для современной медицины. Детальное изучение молекулярно-генетических закономерностей послужило базой для понимания процессов, происходящих в организме как больного, так и здорового человека. Именно генетика дала толчок развитию таких наук, как вирусология, микробиология, эндокринология, фармакология и иммунология.

1865 год - Открытие Г. Менделем (1822-1884) факторов наследственности и разработка гибридологического метода, т. е. правил скрещивания организмов и учета признаков у их потомства.

1868 год - швейцарский биохимик Ф. Мишер из спермы лосося выделил фосфорсодержащее вещество, происходящее из клеточных ядер, которое он назвал нуклеином (теперь его называют дезоксирибонуклеиновой кислотой).

1871 год - Ч. Дарвин публикует свою книгу «Происхождение человека и половой отбор».

1875 год - Ф. Гальтон демонстрирует возможность использования близнецов для изучения относительного влияния на организм наследственности и окружающей среды.

1900 год - Формальное рождение генетики как науки. Независимая публикация статей Г. де Фриза, К. Корренса и Э. Чермака с изложением основных законов наследования. Фактически переоткрыты и стали известны широкой научной общественности исследования Г. Менделя.

1902 год - В. Саттон и Т. Бовери независимо создают хромосомную теорию наследственности.

1905 год - У. Бэтсон предлагает слово «генетика» (от греч. γιγνομαι – порождать ) для нового направления науки.

1909 год - В. Иогансеном предложен термин – «генотип».

1910 год - Томас Хант Морганом установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Морган установил также закономерности наследования признаков, сцепленных с полом (Нобелевская премия 1933 г. по физиологии и медицине за экспериментальное обоснование хромосомной теории наследственности).

А. Кёссель получил Нобелевскую премию по химии за установление того, что в состав ДНК входят четыре азотистых основания: аденин, гуанин, цитозин и тимин.

1917 год - Николаем Константиновичем Кольцовым основан Институт экспериментальной биологии.

1920 год - термин «геном» впервые предложен немецким генетиком Г. Винклером.

1922 год - Н. И. Вавилов сформулировал «закон гомологических рядов» – о параллелизме в изменчивости родственных групп растений, то есть о генетической близости этих групп. Закон Вавилова установил определенные правила формообразования и позволил предсказывать у данного вида еще не открытые, но возможные признаки (аналогия с системой Менделеева).

1925 год - Г. А. Надсон, Г. С. Филиппов, Г. Мюллер проводят первый цикл работ по радиационным методам индукции мутаций.

1926 год - С. С. Четвериков написал статью, заложившую основы популяционной генетики и синтеза генетики и теории эволюции.

1927 год - Г. Мюллер доказал мутационный эффект рентгеновских лучей, за что в 1946 г. получил Нобелевскую премию в области физиологии и медицины.

Н. К. Кольцов выдвинул идею матричного синтеза, которая позднее легла главным камнем в основание молекулярной биологи: «В основе каждой хромосомы лежит тончайшая нить, которая представляет собой спиральный ряд огромных органических молекул – генов. Возможно, вся эта спираль является одной гигантской длины молекулой» .

1928 год - Открытие явления трансформации у бактерий (Ф. Гриффит).

1929-1930 годы - А. С. Серебровский и Н. П. Дубинин впервые продемонстрировали сложную природу организации гена; первые реальные шаги на пути создания современного представления о тонкой структуре гена.

1931 год - Барбара Мак–Клинток продемонстрировала наличие кроссинговера.

1934 год - Н. П. Дубинин и Б. Н. Сидоров открыли особый тип эффекта положения.

Б. Л. Астауров осуществил успешные опыты по получению у шелкопряда потомства из неоплодотворенных яиц (одно из самых интересных достижений в прикладной генетике того времени).

1935 год - Н. В. Тимофеев–Ресовский, К. Г. Циммер, М. Дельбрюк осуществили экспериментальное определение размеров гена. Ими дана трактовка гена с позиций квантовой механики, тем самым был создан фундамент для открытия структуры ДНК.

1940 год - Дж. Бидл и Э. Татум сформулировали теорию «один ген – один фермент». (Нобелевская премия по физиологии и медицине за 1958 г.).

1943 год - И. А. Рапопорт, Ш. Ауэрбах и Дж. Г. Робсон впервые показали индукцию мутаций химическими веществами.

1944 год - начало «эры ДНК». О. Эвери, К. Маклеод и М. Маккарти установили, что «веществом гена» служит ДНК. В своих экспериментах по трансформации бактерий эти учёные показали, что проникновение молекул очищенной ДНК, выделенной из вирулентных пневмококков, вызывающих заболевание и гибель зараженных мышей, в клетки авирулентного штамма этих бактерий может сопровождаться превращением (трансформацией) последних в вирулентную форму.

М. Дельбрюк, С. Лурия, А. Херши произвели пионерские исследования по генетике кишечной палочки и ее фагов, после чего эти объекты стали модельными для генетических исследований на многие десятилетия. (Нобелевская премия по физиологии и медицине за 1969 год за открытие цикла репродукции вирусов и развитие генетики бактерий и вирусов).

Л. А. Зильбер сформулировал вирусно–генетическую теорию рака.

1946 год - Меллер Герман Джозеф (1890-1967), американский генетик получил Нобелевскую премию за открытие радиационного мутагенеза.

1950 год - Э. Чаргафф сформулировал знаменитое «правило Чаргаффа», которое гласит: в ДНК число нуклеотидов А равно числу Т, а число Г – числу Ц.

Б. Мак–Клинток показала существование перемещающихся генетических элементов. С большим опозданием (только в 1983 г.) она получила за это Нобелевскую премию в области физиологии и медицины.

1951 год - Р. Франклин и М. Уилкинсон получили первую рентгеннограмму молекулы ДНК.

1953 год, 25 апреля - Френсис Крик и Джеймс Уотсон, опираясь на результаты опытов генетиков и биохимиков и на данные рентгеноструктурного анализа, создали структурную модель ДНК в форме двойной спирали. В английском журнале «Nature» они опубликовали небольшую статью со своей моделью. В 1962 году им совместно с М. X. Ф. Уилкинсом присуждена Нобелевская премия по физиологии и медицине.

1956 год - Ю. Тио и A. Леван установили, что диплоидный набор хромосом у человека равен 46.

А. Корнберн обнаружил первый фермент, способный синтезировать ДНК в пробирке – ДНК–полимеразу I. В 1959 году он совместно с С. Очоа получил Нобелевскую премию по физиологии и медицине за исследование механизма биологического синтеза РНК и ДНК.

1958 год - М. Мезельсон и Ф. Сталь доказали полуконсервативный механизм репликации ДНК.

1960 год - Открытие РНК–полимеразы С. Б. Вейсом, Дж. Гурвицем и А. Стивенсом.

И. А. Рапопорт сообщил об открытии «супермутагенов».

1961 год - В работах М. У. Ниренберга, Р. У. Холли и X. Г. Кораны начата расшифровка «языка жизни» – кода, которым в ДНК записана информация о структуре белковых молекул. В 1968 году все трое разделили Нобелевскую премию по физиологии и медицине, которая была присуждена им «за расшифровку генетического кода и его функционирования в синтезе белков».

Ф. Жакоб и Ж. Моно пришли к выводу о существовании двух групп генов – структурных, отвечающих за синтез специфических (ферментных) белков, и регуляторных, осуществляющих контроль за активностью структурных генов. В 1965 г. Нобелевская премия по физиологии и медицине присуждена А. М. Львову, Ф. Жакобу и Ж. Моно за открытие генетической регуляции синтеза ферментов и вирусов.

Весной этого года в Москве на Международном биохимическом конгрессе ученый М. Ниренберг сообщил, что ему удалось «прочесть» первое «слово» в тексте ДНК. Это была тройка нуклеотидов - ААА (в РНК, соответственно, УУУ), то есть три аденина, стоящие друг за другом. Эта последовательность кодирует аминокислоту фенилаланин в белке.

1962 год - Дж. Гёрдон осуществил первое клонирование животного организма (лягушка).

Дж. Кэндрью и М. Перутц были удостоены Нобелевской премии по химии за впервые осуществленную расшифровку трехмерной структуры белков миоглобина и гемоглобина.

1965 год - Р. Б. Хесин показал, что регуляция синтеза белка осуществляется путем включения и выключения транскрипции генов.

1966 год - Б. Вейс и С. Рихардсон открывают фермент ДНК–лигазу.

1969 год - Х. Г. Корана синтезировал химическим путем первый ген.

1970 год - Открытие обратной транскриптазы, фермента, синтезирующего ДНК с использованием комплементарной РНК в качестве матрицы. Это было сделано будущими Нобелевскими лауреатами по физиологии и медицине (1975) Г. Теминым и Д. Балтимором.

Выделена первая рестриктаза – фермент, разрезающий ДНК в строго определенных местах. За это открытие в 1978 году Нобелевская премия по физиологии и медицине была присуждена Д. Натансу, Х. Смиту и В. Арберу.

1972 год - В лаборатории Пола Берга получены первые рекомбинантные ДНК (Нобелевская премия по химии за 1980 г. вручена П. Бергу и Г. Бойеру). Заложены основы генной инженерии.

1973 год - С. Коэн и Г. Бойер разработали стратегию переноса генов в бактериальную клетку.

1974 год - С. Милстайн и Г. Келер создали технологию получения моноклональных антител. Ровно десять лет спустя они (вместе с Н. К. Ерне) получили за это Нобелевскую премию по физиологии и медицине.

Р. Д. Корнберг описывает структуру хроматина (нуклеосомы).

1975 год - С. Тонегава показал различное расположение генов, кодирующих вариабельную и константную часть иммуноглобулинов, в ДНК эмбриональных и миелоидных клеток, что дало основание для вывода о перегруппировках генов иммуноглобулинов при образовании клеток иммунной системы (Нобелевская премия по физиологии и медицине в 1987 г.). Осуществлено первое клонирование кДНК.

Е. Саузерн описал метод переноса фрагментов ДНК на нитроцел–люлозные фильтры, метод получил название Саузерн–блот гибридизации.

1976 год - Открытие у животных (на примере дрозофилы) «прыгающих генов», сделанное Д. Хогнессом (США) и российскими учеными во главе с Г. П. Георгиевым и В. А. Гвоздевым.

Основана первая генно–инженерная компания (Genentech), использующая технологию рекомбинантных ДНК для производства различных ферментов и лекарственных средств.

Д. М. Бишоп и Г. Э. Вармус сообщили, что онкоген в вирусе представляет собою не истинный вирусный ген, а клеточный ген, который вирус «подхватил» когда–то давно в ходе репликации в клетках и теперь сохраняет в измененном мутациями виде. Было также показано, что его предшественник, клеточный протоонкоген, в здоровой клетке играет важнейшую роль-управляет ее ростом и делением. В 1989 г. оба этих ученых получили Нобелевскую премию по физиологии и медицине за фундаментальные исследование канцерогенных генов опухоли.

1977 год - Опубликованы быстрые методы определения (секвенирования) длинных нуклеотидных последовательностей ДНК (У. Гилберт и А. Максам; Ф. Сенгер с соавт.). Появилось реальное средство анализа структуры генов как основа для понимания их функций. В 1980 году У. Гильберт и Ф. Сенгер совместно с П. Бергом получили Нобелевскую премию по химии «за существенный вклад в установление первичной структуры ДНК; за фундаментальные исследования биохимических свойств нуклеиновых кислот, в том числе рекомбинант–ных ДНК».

Полностью секвенирован геном бактериофага φΧ174 (5386 п. н.).

Секвенирован первый ген человека – ген, кодирующий белок хорионный соматомаммотропин.

П. Шарп и Р. Робертс показали, что гены у аденовирусов (позднее выяснилось, что и у эукариотических организмов) имеют моаичную экзон–интронную структуру, и открыли явление сплайсинга (Нобелевская премия по физиологии и медицине в 1993 г.).

К. Итакура с соавт. синтезируют химически ген соматостатина человека и осуществляет искусственный синтез гормона соматостатина в клетках кишечной палочки E. coli.

1978 год - Компания Genentech осуществила перенос эукариотического гена инсулина в бактериальную клетку, где на нем синтезирован белок – проинсулин.

Определена полная последовательность нуклеотидов ДНК вируса SV40 и фага fd .

1979 год - Показано, что химически трансформированные клетки содержат активированный онкоген BAS .

1980 год - Дж. Гордоном с соавт. получена первая трансгенная мышь. В пронуклеус оплодотворенного одноклеточного эмбриона микроинъекцией введен ген тимидин–киназы вируса простого герпеса и показано, что этот ген работает во всех соматических клетках мыши. С тех пор трансгеноз стал основным подходом как для фундаментальных исследований, так и для решения практических задач сельского хозяйства и медицины.

1981 год - Определена полная нуклеотидная последовательность митохондриальной ДНК человека.

Несколько независимых исследовательских групп сообщили об открытии человеческих онкогенов.

1982 год - Определена полная нуклеотидная последовательность бактериофага λ (48502 п. н.).

Показано, что РНК может обладать каталитическими свойствами, как и белок.

1983 год - С помощью биоинформатики найдена гомология фактора роста PDGF с известным онкобелком, кодируемым онкогеном SIS.

Показано, что разные онкогены кооперируют при опухолевой трансформации клеток.

Ген болезни Хантигтона локализован на хромосоме 4 человека.

1984 год - У. Мак–Гиннис открыл гомеотические (Hox) регуляторные гены, ответственные за построение общего плана тела животных.

А. Джеффрис создает метод геномной дактилоскопии, в котором нуклеотидные последовательности ДНК используются для идентификации личности.

1985 год - Создание К. Б. Мюллисом революционизирующей технологии – полимеразной цепной реакции, ПЦР – наиболее чувствительного до сих пор метода детектирования ДНК. Эта технология получила широкое распространение (Нобелевская премия по химии за 1993 г.).

Клонирование и определение нуклеотидной последовательности ДНК, выделенной из древней египетской мумии.

1986 год - Клонирование гена RB – первого антионкогена – супрессора опухолей. Начало эпохи массированного клонирования генов опухолеобразования.

1987 год - Созданы первые дрожжевые искусственные хромосомы – YAC (Yeast Artificial Chromosomes). Они сыграют большую роль как векторы для клонирования больших фрагментов геномов.

1988 год - создан проект «Геном человека» Национального института здоровья США. Инициатором и руководителем этого проекта стал лауреат Нобелевской премии знаменитый ученый Джеймс Уотсон.

Под эгидой Комитета по науке и технике в СССР начала работу программа «Геном человека», которую возглавил Научный совет по геномной программе во главе с академиком А. А. Баевым.

Показана возможность анализа митохондриальной ДНК из очень древних образцов при исследовании мозга человека давностью 7000 лет.

Предложен метод «нокаута» генов.

1989 год - Т. Р. Чех и С. Альтман получили Нобелевскую премию по химии за открытие каталитических свойств некоторых природных РНК (рибозимов).

1990 год - в США и в СССР, а затем в Англии, Франции, Германии, Японии, Китае начали работать научные программы по расшифровке генома человека. Объединила эти проекты Международная организация по изучению генома человека (Human Genome Organization, сокращенно HUGO). Вице–президентом HUGO в течение нескольких лет был российский академик А. Д. Мирзабеков.

Ф. Коллинз и Л. – Ч. Тсуи идентифицировали первый ген человека (CFTR), ответственный за наследственное заболевание (кистозный фиброз), который расположен на хромосоме 7.

В. Андерсоном осуществлено первое успешное применение генной терапии для лечения больной с наследственным иммунодефицитом.

Определена полная последовательность генома вируса оспо–вакцины (192 т. п. н.).

1992 год - Э. Кребсу и Э. Фишеру присуждена Нобелевская премия по физиологии и медицине за открытие обратимого фосфорилирования белков как важного регулирующего механизма клеточного метаболизма.

1995 год - компанией «Celera Genomics» определена полная последовательность генома первого самостоятельно существующего организма – бактерии Haemophilus influenzae (1 830 137 п. н.)

Становление геномики как самостоятельного раздела генетики.

1997 год - Определена полная последовательность нуклеотидов геномов кишечной палочки E. coli и дрожжей Saccharomyces cerevisiae.

Нобелевская премия по физиологии и медицине присуждена американцу С. Прузинеру за вклад в изучение болезнетворного агента белковой природы, приона, вызывающего губчатую энцефалопатию, или «коровье бешенство» у крупного рогатого скота.

Я. Вильмут с сотрудниками впервые клонировали млекопитающее – овцу Долли .

1998 год - расшифровано всего около 3% генома человека.

Определена полная нуклеотидная последовательность первого высшего организма – нематоды Caenorhabditis elegans.

У нематоды C. elegans обнаружен механизм РНК–интерференции.

1999 год - Роберт Фурчготт, Луис Игнарро и Ферид Мурад получили Нобелевскую премию за открытие роли оксида азота в качестве сигнальной молекулы (то есть, регулятора и переносчика сигналов) сердечно–сосудистой системы.

Учёные клонировали мышь и корову.

1999 год, декабрь - в журнала Nature за появилась статья под названием «Нуклеотидные последовательности первой хромосомы человека». В этой статье коллектив, состоящий из более чем двухсот авторов, сообщил о полной расшифровке одной из самых малых хромосом человека – хромосомы под номером 22.

2000 год - Нобелевская премия по физиологии и медицине присуждена А. Карлссону, П. Грингарду и Э. Кенделу за открытие, касающееся «передачи сигналов в нервной системе».

Учёные клонировали свинью.

2000 год, июнь - два конкурирующих коллектива – «Celera Genomics» и международный консорциум HUGO, объединив свои данные, официально объявили о том, что их совместными усилиями в целом завершена расшифровка генома человека, создан его черновой вариант.

2001 год - Нобелевская премия по физиологии и медицине присуждена Л. Хартвеллу, Т. Ханту и П. Нерсу за открытие ключевых регуляторов клеточного цикла.

2001 год, февраль - появились первые научные публикации чернового варианта структуры генома человека.

2002 год - Полностью расшифрован геном мыши.

Нобелевская премия по физиологии и медицине присуждена С. Бреннеру, Р. Хорвитцу и Дж. Салстону за их открытия в области генетического регулирования развития органов и запрограммированной клеточной смерти.