1 основной закон динамики поступательного движения. Динамика материальной точки и поступательного движения твердого тела

Продифференцировав момент импульса по времени, получим основное уравнение динамики вращательного движения, известное как второй закон Ньютона для вращательного движения, формулируемый следующим образом: скорость изменения момента импульса L тела, вращающегося вокруг неподвижной точки, равна результирующему моменту всех внешних сил M , приложенных к телу, относительно этой точки:

d L /dt = M (14)

Так как момент импульса вращающегося тела прямо пропорционален угловой скорости вращения, а производная d /dt есть угловое ускорение , то это уравнение может быть представлено в виде

J = M (15)

где J – момент инерции тела.

Уравнения (14) и (15), описывающие вращательное движение тела, по своему содержанию аналогичны второму закону Ньютона для поступательного движения тел (m a = F ). Как видно, при вращательном движении в качестве силы F используется момент силы M , в качестве ускорения a – угловое ускорение , а роль массы m , характеризующей инерционные свойства тела, играет момент инерции J .

Момент инерции

Момент инерции твердого тела определяет пространственное распределение массы тела и является мерой инертности тела при вращательном движении. Для материальной точки, или элементарной массы m i , вращающейся вокруг оси, введено понятие момента инерции, который представляет собой скалярную величину, численно равную произведению массы на квадрат расстояния r i до оси:

J i = r i 2 m i (16)

Момент же инерции объемного твердого тела есть сумма моментов инерции составляющих его элементарных масс:

Для однородного тела с равномерно распределенной плотностью = m i /V i (V i – элементарный объем) можно записать:

или, в интегральной форме (интеграл берется по всему объему):

J =  ∫ r 2 dV (19)

Использование уравнения (19) позволяет рассчитать моменты инерции однородных тел различной формы относительно любых осей. Наиболее простой результат, однако, получается при расчете моментов инерции однородных симметричных тел относительно их геометрического центра, который в данном случае является центром масс. Рассчитанные таким образом моменты инерции некоторых тел правильной геометрической формы относительно осей, проходящих через центры масс, приведены в таблице 1.

Момент инерции тела относительно любой оси можно найти, зная собственный момент инерции тела, т.е. момент инерции относительно оси, проходящей через его центр масс, используя теорему Штейнера. Согласно ей момент инерции J относительно произвольной оси равен сумме момента инерции J 0 относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния r между осями:

J = J 0 + m r 2 (20)

Ось, при вращении тела вокруг которой, не возникает момент силы, стремящийся изменить положение оси в пространстве, называется свободной осью данного тела. У тела любой формы существуют три взаимно перпендикулярные свободные оси, проходящие через его центр масс, которые называются главными осями инерции тела. Собственные моменты инерции тела относительно главных осей инерции называются главными моментами инерции.

Таблица 1.

Моменты инерции некоторых однородных тел (с массой m ) правильной геометрической формы относительно осей, проходящих через центры масс

Тело

Расположение оси (указано стрелкой)

Момент инерции

Шар радиуса r

2mr 2 /5 (ф1)

Обруч радиуса r

mr 2 (ф2)

Диск радиуса r при толщине, пренебрежимо малой по сравнению с радиусом

mr 2 /4 (ф3)

mr 2 /2 (ф4)

Сплошной цилиндр радиуса r с высотой l

mr 2 /2 (ф5)

mr 2 /4 + ml 2 /12 (ф6)

Полый цилиндр с внутренним радиусом r и толщиной стенок d

m [(r + d ) 2 + r 2 ]/2 (ф7)

Тонкий стержень длиной l

ml 2 /12 (ф8)

Прямоугольный параллелепипед со сторонами a , b и c

m (a 2 + b 2)/2 (ф9)

Куб с длиной ребра a

ma 2 /6 (ф10)

Описание установки и принципа измерений:

Установка, используемая в настоящей ра­боте для изучения основных закономерностей динамики вращательного движения твердого тела вокруг неподвижной оси, называется маятни­ком Обербека. Общий вид установки показан на рисунке 4.

Основным элементом установки, осуществляющим вращательное движение вокруг оси, перпенди­кулярной плоскос­ти рисунка, является крестовина1 , состоящая из четырех ввинченных в шкив 2 под прямым углом друг к другу стержней (спиц), на каждый из которых надет свободно пере­мещаемый вдоль стержня ци­линдрический гру­з 3 массой , закрепляемый в нужном положе­нии винтом4 . Вдоль всей длины спиц с сантиметровым интер­валом нанесены поперечные нарезки, с помощью которых можно легко отсчи­тать расстоя­ния от центра расположения грузов до оси вращения. Пере­мещением грузов достигается изменение момента инерции J всей крестовины.

Вращение крестовины происходит под действием силы натяжения (силы уп­ругости) нити 5 , закрепленной одним своим концом в каком-либо одном из двух шкивов (6 , или 7 ), на который при вращении крестовины она наматывается. Другой конец нити с прикрепленным к нему гру­зом P 0 8 переменной массы m 0 перекидывается через неподвижный блок 9 , который меняет направление вращающей силы натяжения, сов­падающей с касательной к соответствующему шкиву. Использование од­ного из двух шкивов, различающихся радиусами, позволяет изменять плечо вращающей силы, а, следовательно, и ее момент M .

Проверка различных закономерностей вращательного движения в данной работе сводится к измерению времени t опускания груза с высоты h .

Для определения высоты опускания груза на маятнике Обербека служит миллиметровая шкала 10 , прикрепленная к вертикальной стойке 11 . Величина h соответствует расстоянию между рисками, одна из которых нанесена на верхнем подвижном кронш­тейне 12 , а другая – на нижнем кронштейне 13 , укреп­ленном неподвижно в стойке 11 . Подвижный кронштейн можно, перемещая вдоль стойки, фиксировать в любом нужном положении, задавая высоту опускания груза.

Автоматическое измерение времени опускания груза осуществляется с помощью электронного миллисекундомера, цифровая шкала которого 14 расположена на передней панели, и двух фотоэлектрических датчиков, один из которых 15 закреплен на верхнем кронштейне, а другой 16 – на нижнем неподвижном кронштейне. Датчик 15 подает сигнал запуска электронного секундомера при начале движения груза от его верхнего положения, а датчик 16 при достижении грузом нижнего положения подает сигнал, который останавливает секундомер, фиксируя время t прохождения грузом расстояния h , и одновременно включает расположенный за шкивами 6 и 7 тормозной электромагнит, останавли­вающий вращение крестовины.

Упрощенная схема маятника представлена на рисунке 5.

На грузP 0 действуют постоянные силы: сила тяжести mg и сила натяжения нити T , под действием которых груз движется вниз равноуско­ренно с ускорением a . Шкив радиуса r 0 под действием силы натяжения нити T вращается с угловым ускорением , при этом тангенциальное ускорение a t край­них точек шкива будет равно ускорению a опускающегося груза. Ускорения a и  связаны соотношением:

a = a t = r 0 (21)

Если время опускания груза P 0 обозначить через t , а пройден­ный им путь через h , то по закону равноускоренного движения при начальной скорости, равной 0, ускорение a может быть найдено из соотношения:

a = 2h /t 2 (22)

Измерив штангенциркулем диаметр d 0 соответствующего шкива, на который намотана нить, и вычислив его радиус r o , из (21) и (22) можно рассчитать угловое ускорение вращения крестовины:

 = a /r 0 = 2h /(r 0 t 2) (23)

Когда привязанный к нити груз опускается, двигаясь равноускоренно, нить разматывается и приводит маховик в равноускоренное вращательное движение. Сила, вызывающая вращение тела, есть сила натяжения нити. Ее можно определить из следующих соображений. Поскольку, согласно второму закону Ньютона, произведение массы движущегося тела на его ускорение равно сумме действующих на тело сил, то в данном случае на подвешенное на нити и опускающееся с равномерным ускорением a тело массой m 0 действуют две силы: вес тела m 0 g , направленный вниз, и сила натяжения нити T , направленная вверх. Поэтому имеет место соотношение:

m 0 a = m 0 g T (24)

T = m 0 (g a ) (25)

Следовательно, вращающий момент будет равен:

M = Tr 0 = (m 0 g m 0 a )r 0 (26)

где r 0 – радиус шкива.

Если пренебречь силой трения диска об ось крестовины, то мож­но считать, что на крестовину действует только момент M силы натяжения нити T . Поэтому, воспользовавшись вторым законом Ньютона для вращательного движения (13), можно рассчитать мо­мент инерции J крестовины с вращающимися на ней грузами с учетом (16) и (19) по формуле:

J = M / = m 0 (g a )r 0 2 t 2 /2h (27)

или, подставляя выражение для a (15):

J = m 0 r 0 2 (t 2 g /2h – 1) (28)

Полученное уравнение (28) является точным. В то же время, проделав опыты по определению ускорения движения груза P 0 , можно убедиться, что a << g , и поэтому в (27) значение (g a ), пренебрегая величиной a , можно принять равным g . Тогда выражение (27) примет вид:

J = M / = m 0 r 0 2 t 2 g /2h (29)

Если величины m 0 , r 0 и h в ходе проведения опытов не меняются, то между моментом инерции крестовины и временем опускания груза имеется простая квадратичная зависимость:

J = Kt 2 (30)

где K = m 0 r 0 2 g /2h . Таким образом, измерив время t опускания груза массой m 0 , и зная высоту его опускания h , можно рассчитать момент инерции крестовины, состоящей из спиц, шкива, в котором они закреплены, и грузов, находящихся на крестовине. Формула (30) позволяет проверить основные закономерности динамики вращательного движе­ния.

Если момент инерции тела постоянен, то разные вращающие моменты М 1 и М 2 сообщат телу разные угловые ускорения ε 1 и ε 2 , т.е. будем иметь:

M 1 = J ε 1 , M 2 = J ε 2 (31)

Сравнивая эти выражения, получаем:

M 1 /M 2 = ε 1 /ε 2 (32)

С другой стороны, один и тот же вращающий момент сообщит телам с разными моментами инерции различные угловые ускорения. Действительно,

M = J 1 ε 1 , M = J 2 ε 2 (33)

J 1 ε 1 = J 2 ε 2 , или J 1 /J 2 = ε 1 /ε 2 (34)

Порядок выполнения работы:

Задание 1 . Определение момента инерции крестовины и проверка зависимости углового ускорения от момента вращающей силы.

Задание выполняется с крестовиной без надетых на нее грузов.

    Выберите и установите высоту h опускания груза m 0 путем перемещения верхнего подвижного кронштейна 12 (высота h может быть задана преподавателем). Значение h занесите в таблицу 2.

    Измерьте штангенциркулем диаметр выбранного шкива и найдите его радиус r 0 . Значение r 0 занесите в таблицу 2.

    Выбрав наименьшее значение массы m 0 , равное массе подставки, на которую надеваются дополнительные грузы, намотайте нить на выбранный шкив так, чтобы груз m 0 был под­нят на высоту h . Измерьте три раза время t 0 опускания этого груза. Данные запишите в таблицу 2.

    Повторите предыдущий опыт, для различных (от трех до пяти) масс m 0 опускающегося груза, учтя массу подставки, на которую одеваются грузы. Массы подставки и грузов указаны на них.

    После каждого опыта проведите следующие расчеты (занося их результаты в таблицу 2):

    1. рассчитайте среднее время опускания груза t 0 ср. и, используя его, по формуле (22) определите линейное ускорение грузов a . С таким же ускорением движутся точки на поверхности шкива;

      зная радиус шкива r 0 , по формуле (23) найдите его угловое ускорение ε;

      используя полученное значение линейного ускорения a по формуле (26) найдите вращающий момент М ;

      на основе полученных значений ε и M вычислите по формуле (29) момент инерции маховика J 0 без грузов на стержнях.

    По результатам всех опытов рассчитайте и занесите в таблицу 2 среднее значение момента инерции J 0,ср. .

    Для второго и последующих опытов рассчитайте, занося результаты расчетов в таблицу 2, отношения ε i /ε 1 и М i /M 1 (i – номер опыта). Проверьте правильность соотношения М i /M 1 = ε 1 /ε 2 .

    По данным таблицы 2 для какой-нибудь одной строки рассчитайте погрешности измерений момента инерции по формуле:

J = J 0 /J 0, ср. = m 0 /m 0 + 2r 0 /r 0 + 2t /t ср. + h /h ; J 0 =  J J 0,ср.

Значения абсолютных погрешностей r , t , h считайте равными приборным погрешностям; m 0 = 0,5 г.

Таблица 2.

Постоянные в данном задании параметры установки, используемые в расчетах:

r 0 , м

m 0 , кг

t 0 , с

t 0ср. , с

a , м/с 2

J 0 , кгм 2

J 0,ср. , кгм 2

J 0 , кгм 2

M i /M 1

Задание 2 . Проверка зависимости углового ускорения от величины момента инерции при неизменном вращающем моменте.

Крестови­на состоит из четырех спиц (стержней), четырех грузов и двух шкивов, насажен­ных на ось вращения. Так как массы шкивов малы и близко расположены к оси вращения, мож­но считать, что момент инерции J всей крестовины равен сумме мо­ментов инерции всех стержней (т.е. момента инерции крестовины без грузов J 0) и моментов инерции всех грузов, находящихся на стрежнях J гр, т.е.

J = J 0 + J гр (35)

Тогда момент инерции грузов относительно оси вращения ра­вен:

J гр = J J 0 (36)

Обозначив момент инерции крестовины с грузами, находящимися на расстоянии r 1 от оси вращения через J 1 , а соот­ветствующий момент инерции самих грузов через J гр1 , перепишем (36) в виде:

J гр1 = J 1 – J 0 (37)

Аналогично для грузов, расположенны­х на расстоянии r 2 от оси вращения:

J гр2 = J 2 – J 0 (38)

Учитывая приближенное соотношение (30), имеем:

J гр 1 = Kt 1 2 – Kt 0 2 = K (t 1 2 – t 0 2) и J гр 2 = Kt 2 2 – Kt 0 2 = K (t 2 2 – t 0 2) (39)

где t 1 – время опускания груза m 0 для случая, когда грузы на стержнях укреплены на расстоянии r 1 от оси вращения; t 2 – время опускания груза m 0 при закреплении грузов на стержнях на расстоянии r 2 от оси вращения; t 0 – время опускания груза m 0 при вращении крестовины без грузов.

Отсюда следует, что отношение моментов инерции грузов, находя­щихся на разных расстояниях от оси вращения, связано с временными характеристиками процесса опускания груза m 0 в виде:

J гр 1 /J гр 2 = (t 1 2 – t 0 2)/(t 2 2 – t 0 2) (40)

С другой стороны, приняв приближенно 4 груза, находящиеся на крестовине, за точечные массы m , можно считать, что:

J гр 1 = 4mr 1 2 и J гр 2 = 4mr 2 2 , (41)

J гр1 /J гр2 = r 1 2 /r 2 2 (42)

Совпадение правых частей уравнений (40) и (42) могло бы служить экспериментальным подтверждением наличия прямой пропорциональной зависимости момента инерции материальных точек от квадрата их расстояния до оси вращения. На самом деле оба соотношения (40) и (42) являются приблизительными. Первое из них получено в предположении, что ускорением a опускания груза m 0 можно пренебречь в сравнении с ускорением свободного падения g , и, кроме того, при его выводе не учтен момент сил трения шкивов об ось и момент инерции всех шкивов относитель­но оси вращения. Второе относится к точечным массам (т.е. массам тел, размерами которых можно пре­небречь по сравнению с их расстоянием до центра вращения), каковыми цилиндрические грузы не являются, и поэтому, чем дальше от оси вращения они находятся, тем точнее выполняется соотношение (42). Этим и можно объяснить некоторое расхождение результатов, по­лучаемых экспериментально, с теорией.

Для проверки зависимости (42) проделайте опыты в следую­щей последовательности:

    Закрепите 4 груза на стержнях ближе к их концам на одинаковом расстоянии от шкива. Определите и запишите в таблицу 3 расстояние r 1 от оси вращения до центров масс грузов. Оно определяется по формуле: r 1 = r ш + l + l ц /2, где r ш – радиус шкива, на котором закреплены стержни, l – расстояние от груза до шкива, l ц – длина цилиндрического груза. Диаметр шкива и длину грузов измерьте штанген­циркулем.

    Измерьте три раза время t 1 опускания груза m 0 и рассчитайте среднее значение t 1ср. . Опыт проделайте для тех же масс m 0 , что и в задании 1. Данные запишите в таблицу 3.

    Сдвиньте грузы на спицах к центру на произвольное, одина­ковое для всех спиц расстояние r 2 < r 1 . Вычислите это расстояние (r 2) с учетом замечаний в п. 1 и запишите в таблицу 3.

    Измерьте три раза время t 2 опускания груза m 0 для этого слу­чая. Рассчитайте среднее значение t 2ср. , повторите опыт для тех же масс m 0 , как и в п. 2 и запишите полученные данные в таблицу 3.

    Перенесите из таблицы 2 в таблицу 3 значения t 0ср. , полученные в предыдущем задании для соответствующих значений m 0 .

    Для всех значений m 0 , используя имеющиеся средние значения t 0 , t 1 и t 2 , по формуле (40) рассчитайте величину b , равную отношению моментов инерции грузов, находящихся на разных расстояниях от оси вращения: b = J гр.1 /J гр.2 , и определите b ср. . Результаты запишите в таблицу 3.

    По данным любой одной строки таблицы 3 рассчитайте пог­решность, допущенную при определении отношения (40), пользуясь правилами нахождения погрешностей при косвенных измерениях:

b = b /b ср. = 2t (t 1 + t 0)/(t 1 2 – t 0 2) + 2t (t 2 + t 0)/(t 2 2 – t 0 2); b =  b b ср.

    Рассчитайте значение отношения r 1 2 /r 2 2 и запишите в таблицу 3. Сравните это отношение со значением b ср. и проанализируйте некоторые расхождения в пределах погреш­ности опыта полученных результатов с теорией.

Таблица 3.

m 0 , кг

r 1 , м

t 1 , с

t 1ср. , с

r 2 , м

t 2 , с

t 2ср. , с

t 0ср. , с

r 1 /r 2

Задание 3 . Проверка формул для моментов инерции тел правильной формы.

Теоретически рассчитанные формулы для определения собственных моментов инерции различных однородных тел правильной формы, т.е. моментов инерции относительно осей, проходящих через центры масс этих тел, приведены в таблице 1. В то же время, пользуясь полученными в заданиях 1 и 2 экспериментальными данными (таблицы 2 и 3) можно рассчитать собственные моменты инер­ции таких тел правильной формы, как грузы, надеваемые на стержни крестовины, а также сами стержни, и сравнить полученные значения с теоретическими значениями.

Так, момент инерции четырех грузов, находящихся на расстоянии r 1 от оси вращения, можно рассчитать на основе экспериментально определенных величин t 1 и t 0 по формуле:

J гр1 = K (t 1 2 – t 0 2) (43)

Коэффициент K в соответствии с введенным в (23) обозначением составляет

K = m 0 r 0 2 g /2h (44)

где m 0 – масса опускающегося груза, подвешенного на нити; h – высота его опускания; r 0 – радиус шкива, на который наматывается нить; g – ускорение свободного падения (g = 9,8 м/с 2).

Рассматривая грузы, надетые на спицы, как однородные цилиндры с массой m ц и учитывая правило аддитивности моментов инерции, можно считать, что момент инерции одного такого цилиндра, вращающегося вокруг оси, перпендикулярной его оси вращения и расположенной на расстоянии r 1 от его центра масс, составляет

J ц1 = K (t 1 2 – t 0 2)/4 (45)

По теореме Штейнера этот момент инерции является суммой момента инерции цилиндра относительно оси, проходящей через центр масс цилиндра перпендикулярно его оси вращения J ц0 , и значения произведения m ц r 1 2:

J ц1 = J ц0 + m ц r 1 2 (46)

J ц 0 = J ц 1 – m ц r 1 2 = K (t 1 2 – t 0 2)/4 – m ц r 1 2 (47)

Таким образом, мы получили формулу для экспериментального определения собственного момента инерции цилиндра относительно оси, перпендикулярной его оси вращения.

Аналогично, момент инерции крестовины, т.е. всех спиц (стержней), можно рассчитать по формуле:

J 0 = Kt 0 2 (48)

где коэффициент K определяется так же, и в предыдущем случае.

Для одного стержня, соответственно:

J ст = Kt 0 2 /4 (49)

Воспользовавшись теоремой Штейнера (здесь m ст – масса стержня, r ст – расстояние от его середины до оси вращения и J ст0 – собственный момент инерции стержня относительно перпендикулярной ему оси):

J ст = J ст0 + m ст r ст 2 (50)

и учитывая, что один из концов стержня находится на оси вращения, т.е. r ст составляет половину его длины l ст, мы получаем формулу для экспериментального определения момента инерции стержня относительно перпендикулярной ему оси, проходящей через его центр масс:

J ст0 = J ст – m ст l ст 2 /4 = (Kt 0 2 – m ст l ст 2)/4 (51)

Для проверки соответствия значений собственных моментов инерции однородных тел правильной формы, полученных экспериментально и рассчитанных теоретически, воспользуйтесь данными заданий 1 и 2 и проведите следующие операции:

    В таблицу 4 перенесите из таблицы 2 значения r 0 , h и m 0 .

    Для всех, использовавшихся в заданиях 1 и 2, значений m 0 рассчитайте значения K и запишите их в таблицу 4.

    Значения t 1ср. и t 0ср. из таблицы 3 для соответствующих значений m 0 перенесите в таблицу 4 (в столбцы t 1 и t 0).

    Занесите в таблицу 4 значение массы груза-цилиндра m ц (написано на грузе) и перенесите в нее из таблицы 3 значение r 1 .

    По формуле (47) для разных значений m 0 рассчитайте экспериментальные значения момента инерции цилиндра относительно оси, проходящей через центр масс перпендикулярно оси симметрии цилиндра J ц0 (э), и запишите их в таблицу 4. Рассчитайте и запишите среднее J ц0 (э‑с) экспериментальное значение.

    Измерьте штангенциркулем длину l ц и диаметр d ц груза-цилиндра. Запишите в таблицу 4 значения l ц и r ц = d ц /2.

    Используя значения l ц, r ц, и m ц, по формуле (ф6) из таблицы 1 рассчитайте J ц0 (т) – теоретическое значение момента инерции цилиндра относительно оси, проходящей через центр масс перпендикулярно оси симметрии цилиндра.

    Измерьте полную длину стержня, учитывая, что l ст = r ш + l , где r ш – радиус шкива, на котором укреплены стержни, и l – расстояние от конца стержня до шкива (l ст можно определить и как половину измеренного расстояния между концами двух противоположно направленных стержней). Запишите значения l ст и массы стержня m ст = 0,053 кг в таблицу 4.

    По формуле (51) для разных значений m 0 рассчитайте экспериментальные значения момента инерции стержня относительно оси, проходящей через центр масс перпендикулярно стержню J ст0 (э), и запишите их в таблицу 4. Рассчитайте и запишите среднее J ст0 (э‑с) экспериментальное значение.

    Используя значения l ст и m ст, по формуле (ф8) из таблицы 1 рассчитайте J ц0 (т) – теоретическое значение момента инерции стержня относительно оси, проходящей через центр масс перпендикулярно стержню.

    Сравните полученные экспериментально и теоретически значения моментов инерции цилиндра и стержня. Проанализируйте имеющиеся расхождения.

Таблица 4.

Для цилиндра

Для стержня

J ц0 (э)

J ц0 (э‑с)

J ц0 (т)

J ст0 (э)

J ст0 (э‑с)

J ст0 (т)

Контрольные вопросы для подготовки к работе:

    Сформулировать второй закон Ньютона для вращательного движе­ния.

    Что называется моментом инерции элементарной массы и твердого тела? Физический смысл момента инерции.

    Что называется моментом силы относительно точки и оси вращения? Как определить направление вектора момента сил относительно точки?

    Какова должна быть зависимость между угловым ускорением и моментом вращающей силы при постоянном моменте инерции? Как эту зависимость проверить практически?

    Как зависит момент инерции тела от распределения в нем массы или распределения массы в системе вращающихся тел? Как убе­диться в этом практически?

    Как определить момент инерции крестовины момент инерции вра­щающихся грузов и спиц при отсутствии силы трения?

Контрольные вопросы для сдачи зачета:

    Выведите расчетные формулы для всех трех заданий.

    Как будут изменяться величины , J и M при неизменном поло­жении грузов на спицах, если

а) увеличить радиуса шкива r 0 при пос­тоянной массе опускающегося груза m 0 ?

б) увеличить m 0 при постоянном r 0 ?

    Как изменится момент инерции крестовины с грузами, если их расстояние от оси вращения уменьшить в три раза при неизменном значении m 0 ? Почему?

    Чему равен момент инерции простейших тел: стержня, обруча, диска.

    Угловая скорость и угловое ускорение тела: определение и смысл этих величин.

УЧЕБНОЕ ИЗДАНИЕ

Макаров Игорь Евгеньевич, профессор, д.х.н.

Юрик Тамара Константиновна, доцент, к.х.н.

Изучение законов вращения на маятнике Обербека

(без учета силы трения)

Методические указания к лабораторной работе

Компьютерная верстка Скворцов И.М.

Технический редактор Киреев Д.А.

Ответственный за выпуск Морозов Р.В.

Бумага офсетная. Печать на ризографе.

Усл.печ.л. Тираж экз. Заказ

Информационно-издательский центр МГУДТ

Динамика материальной точки и поступательного движения твердого тела

Первый закон Ньютона. Масса. Сила

Первый закон Ньютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние . Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют также законом инерции .

Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета .

Масса тела - физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса ) и гравитационные (гравитационная масса ) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10 –12 их значения).

Итак, сила - это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона

Второй закон Ньютона - основной закон динамики поступательного движения - от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.

а ~ F = const ) . (6.1)

а ~ 1 /т (F = const) . (6.2)

а = kF / m . (6.3)

В СИ коэффициент пропорциональности k = 1. Тогда

(6.4)

(6.5)

Векторная величина

(6.6)

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материаль­ной точки.

Подставляя (6.6) в (6.5), получим

(6.7)

Выражение (6.7) называется уравнением движения материальной точки .

Единица силы в СИ - ньютон (Н): 1 Н - сила, которая массе 1 кг сообщает ускорение 1 м/с 2 в направлении действия силы:

1 Н = 1 кг м/с 2 .

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго.

В механике большое значение имеет принцип независимости действия сил : если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было.

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим зако­ном Ньютона .

F 12 = – F 21 , (7.1)

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек.

Силы трения

В меха­нике мы будем рассматривать различные силы: трения, упругости, тяготения.

Силы трения , которые препятствуют скольжению соприкасающихся тел друг относительно друга.

Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении.

В зависимости от характера их относительного движения говорят о трении скольжения , качения или верчения .

Внутренним трением называется трение между частями одного и того же тела, например между различными слоями жидкости или газа. Если тела скользят относительно друг друга и разделены прослойкой вязкой жидкости (смазки), то трение происходит в слое смазки. В таком случае говорят о гидродинамическом трении (слой смазки достаточно толстый) и граничном трении (толщина смазоч­ной прослойки 0,1 мкм и меньше).

Сила трения скольжения F тр пропорциональна силе N нормального давления, с которой одно тело действует на другое:

F тр = f N ,

где f - коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

В пре­дельном случае (начало скольжения тела) F =F тр. или P sin  0 = f N = f P cos  0 , откуда

f = tg 0 .

Для гладких поверхностей определенную роль начинает играть межмолекулярное притяжение. Для них применяется закон трения скольжения

F тр = f ист (N + Sp 0 ) ,

где р 0 - добавочное давление, обусловленное силами межмолекулярного притяжения, которые быстро уменьшаются с увеличением расстояния между частицами; S - пло­щадь контакта между телами; f ист - истинный коэффициент трения скольжения.

Радикальным способом уменьшения силы трения является замена трения скольже­ния трением качения (шариковые и роликовые подшипники и т. д.). Сила трения качения определяется по закону, установленному Кулоном:

F тр = f к N / r , (8.1)

где r - радиус катящегося тела; f к - коэффициент трения качения, имеющий размер­ность dim f к =L. Из (8.1) следует, что сила трения качения обратно пропорциональна радиусу катящегося тела.

Закон сохранения импульса. Центр масс

Совокуп­ность материальных точек (тел), рассматриваемых как единое целое, называется механической системой . Силы взаимодействия между материальными точками механичес­кой системы называются - внутренними . Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними . Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной ). Если мы имеем механическую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и проти­воположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.

Запишем второй закон Ньютона для каждого из n тел механической системы:

Складывая почленно эти уравнения, получаем

Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то

(9.1)

где - импульс системы. Таким образом, производная по времени от им­пульса механической системы равна геометрической сумме внешних сил, действующих на систему.

В случае отсутствия внешних сил (рассматриваем замкнутую систему)

Последнее выражение и является законом сохранения импульса : импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Эксперименты доказывают, что он выпол­няется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон сохранения импуль­са - фундаментальный закон природы.

Закон сохранения импульса является следствием определенного свойства симмет­рии пространства - его однородности. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

Центром масс (или центром инерции ) системы материальных точек называется воображаемая точка С , положение которой характеризует распределение массы этой системы. Ее ра­диус-вектор равен

где m i и r i - соответственно масса и радиус-вектор i -й материальной точки; n - число материальных точек в системе; – масса системы. Скорость центра масс

Учитывая, что pi = m i v i , a есть импульс р системы, можно написать

(9.2)

т. е. импульс системы равен произведению массы системы на скорость ее центра масс.

Подставив выражение (9.2) в уравнение (9.1), получим

(9.3)

т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе. Выражение (9.3) представляет собой закон движения центра масс.

1) Законы Ньютона. Силы в природе.

2) Основные характеристики динамики вращательного движения.

3) Работа и мощность. Механическая энергия.

4) Законы сохранения механики.

Кинематика рассматривает движение тел, не интересуясь причинами, обуславливающими это движение и его изменение.

В основе динамики, которая изучает причины изменения движения, лежат законы Ньютона . Эти законы относятся к фундаментальным законам природы и доказать их справедливость или опровергнуть можно только опытом.

Второй закон Ньютона – основной закон динамики.

Этот закон выполняется только в инерциальных системах отсчета .

В динамике вводятся две новые физические величины – масса тела m и сила https://pandia.ru/text/78/157/images/image001_74.gif" width="23" height="26 src=">является количественной мерой действия одного тела на другое.

Второй закон Ньютона – это фундаментальный закон природы; он является обобщением опытных фактов, которые можно разделить на две категории:

1. Если на тела разной массы подействовать одинаковой силой, то ускорения, приобретаемые телами, оказываются обратно пропорциональны массам

2. Если силами разной величины подействовать на одно то же тело, то ускорения тела оказываются прямо пропорциональными приложенным силам.

Обобщая подобные наблюдения, Ньютон сформулировал основной закон динамики: Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение:

https://pandia.ru/text/78/157/images/image001_74.gif" width="23" height="26 src=">:

В международной системе единиц (СИ) за единицу силы принимается сила, которая сообщает телу массой 1 кг ускорение 1 м/с2. Эта единица называется ньютоном (Н) .

https://pandia.ru/text/78/157/images/image005_17.gif" width="97" height="60">

Если равнодействующая сила равна нулю, то тело будет оставаться в состоянии покоя или равномерного прямолинейного движения.

Второй закон Ньютона также можно записать в виде:

https://pandia.ru/text/78/157/images/image007_8.gif" width="96" height="36"> (4).

Основной единицей импульса тела в СИ является кг · м/с.

Тогда второй закон Ньютона окончательно примет вид:

Таким образом, скорость изменения импульса тела равна действующей на него силе.

Силы в природе.

1) Сила всемирного тяготения. Сила тяжести. Вес тела.

https://pandia.ru/text/78/157/images/image010_6.gif" width="134" height="57 src="> (6)

где - гравитационная постоянная, численно равная силе взаимодействия двух тел единичной массы, находящихся на единичном расстоянии друг от друга.

Сила всемирного тяготения является центральной силой, т. е. направленной вдоль прямой соединяющей центры тел.

Под действием силы притяжения к Земле все тела падают с одинаковым ускорением, равным ускорению свободного падения ..gif" width="20" height="28 src=">.gif" width="69" height="28 src=">.

Сила, с которой тело действует на опору или подвес, вследствие притяжения к Земле, называется весом тела.

2) Силы трения.

Силы трения появляются при перемещении двух соприкасающихся тел или частей тела относительно друг друга.

Силы трения направлены по касательной к трущимся поверхностям, причем так, что они противодействуют относительному смещению этих поверхностей.

В случае сухого трения, сила трения возникает не только при скольжении одной поверхности по другой, но также и при попытках вызвать такое смещение. В этом случае сила трения называется силой трения покоя .

Опыт показывает, что максимальная сила трения покоя https://pandia.ru/text/78/157/images/image019_6.gif" width="105" height="34 src="> (7)

где N – сила нормального давления, - безразмерный коэффициент, зависящий от рода соприкасающихся тел и чистоты обработки поверхности и называемый коэффициентом

трения.

Следует иметь в виду, что, помимо сил трения, при движении в жидкости или газе возникают силы сопротивления среды, которые могут быть гораздо больше сил трения. Характерной особенностью этих сил является их зависимость от скорости движения тела и его формы.

Если на вал с диском действуют две силы https://pandia.ru/text/78/157/images/image022_6.gif" width="83" height="19">, т. е. когда моменты сил равны по величине и противоположны по направлению.

Псевдовектор

https://pandia.ru/text/78/157/images/image024_3.gif" width="21" height="33 src="> относительно точки О.

Модуль вектора определяется по формуле

https://pandia.ru/text/78/157/images/image027_2.gif" width="99" height="23"> - плечо силы, т. е. кратчайшее расстояние от точки О до линии действия силы.

Величину

https://pandia.ru/text/78/157/images/image029_1.gif" width="105" height="51 src="> (11)

называют моментом импульса твердого тела относительно точки.

Физическую величину

(12)

называют моментом инерции материальной точки относительно оси вращения, а величину

(13)

моментом инерции твердого тела.

Любое твердое тело можно разбить на элементарные массы https://pandia.ru/text/78/157/images/image033_1.gif" width="20 height=24" height="24"> от оси вращения..gif" width="133" height="38"> (14),

где https://pandia.ru/text/78/157/images/image037_1.gif" width="14" height="25">- момент инерции относительно новой оси, - расстояние между осями, https://pandia.ru/text/78/157/images/image040_1.gif" width="90" height="33 src="> (15).

Так как , то можно найти и другую форму записи данного закона:

https://pandia.ru/text/78/157/images/image043_1.gif" width="19" height="29 src=">.gif" width="13" height="25 src=">, то работа этой силы определяется по формуле

https://pandia.ru/text/78/157/images/image047_0.gif" width="24" height="20">, так чтобы их можно было считать прямолинейными, а действующую силу в любой точке данного участка – постоянной. Тогда элементарная работа

https://pandia.ru/text/78/157/images/image049_0.gif" width="183" height="42 src="> (19)

При А > 0, при https://pandia.ru/text/78/157/images/image052_0.gif" width="48" height="47"> ,то А = 0

Для характеристики скорости совершения работы вводится физическая величина, называемая мощностью . Если за время совершается работа https://pandia.ru/text/78/157/images/image055_0.gif" width="74" height="53 src="> (20)

называется средней мощностью , а величина

https://pandia.ru/text/78/157/images/image057_0.gif" width="100" height="23"> можно получить

https://pandia.ru/text/78/157/images/image059_0.gif" width="92" height="65 src="> (23)

называют кинетической энергией тела.

Работа равнодействующей всех сил, действующих на тело, равна изменению кинетической энергии тела.

https://pandia.ru/text/78/157/images/image061.gif" width="84" height="58 src="> (25)

Элементарная работа переменной силы при вращательном движении равна:

https://pandia.ru/text/78/157/images/image063.gif" width="116" height="69 src="> (27)

Механическая мощность при вращательном движении определяется выражением:

https://pandia.ru/text/78/157/images/image071.gif" width="218" height="33 src="> (33)

называют импульсом системы тел (частиц) и тогда

Для замкнутой системы тел равнодействующая всех внешних сил равна нулю, т. е..gif" width="62" height="56">,

называется полной механической энергией системы и тогда

(38),

полная механическая энергия системы изменяется на величину работы внешней силы.

Из данного уравнения следует невозможность создания вечного двигателя первого рода, т. е. двигателя который совершал бы работы больше, чем затрачено энергии.

Для замкнутой системы работа внешних сил равна нулю, и поэтому https://pandia.ru/text/78/157/images/image083.gif" width="89 height=24" height="24">

Это утверждение выражает закон сохранения энергии: полная механическая энергия замкнутой системы

остается величиной постоянной.

Глава 2. ЭЛЕМЕНТЫ ДИНАМИКИ

Динамика изучает движение тел с учетом тех причин (взаимодействий между телами), которые обусловливают тот или иной характер движения. В основе классической (ньютоновской) механики лежат три закона динамики, сформулированные И. Ньютоном в XVII в. Законы Ньютона возникли в результате обобщения большого количества опытных фактов. Правильность их подтверждается совпадением с опытом тех следствий, которые из них вытекают.

Первый закон Ньютона формулируется следующим образом: всякое тело находится в состоянии покоя или равномерного и прямолинœейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Оба названных состояния объединяются тем, что ускорение тела равно нулю.

Учитывая, что характер движения зависит от выбора системы отсчета͵ следует сделать вывод, что первый закон Ньютона выполняется не во всякой системе отсчета. Система отсчета͵ в которой выполняется первый закон Ньютона, принято называть инœерциальной. Сам закон называют законом инœерции. Система отсчета͵ в которой первый закон Ньютона не выполняется, принято называть неинœерциальной. Любая система отсчета͵ движущаяся равномерно и прямолинœейно относительно инœерциальной системы, также является системой инœерциальной. По этой причине инœерциальных систем существует бесконечное множество.

Свойство тел сохранять состояние покоя или равномерного и прямолинœейного движения принято называть инœертностью (инœерцией). Мерой инœертности тела является его масса m . Она не зависит от скорости движения тела. За единицу массы принят килограмм (кг) - масса эталонного тела.

В случае если состояние движения тела или его форма и размеры меняются, то говорят, что на тело действуют другие тела. Мерой взаимодействия тел служит сила . Всякая сила проявляется как результат действия одного тела на другое, сводящийся к появлению у тела ускорения или его деформации.

Второй закон Ньютона: результирующая сила, действующая на тело, равна произведению массы этого тела на его ускорение:

Так как масса является скаляром, то из формулы (6.1) следует, что .

На основании этого закона вводится единица силы - ньютон (Н): .

Второй закон Ньютона справедлив только в инœерциальных системах отсчета.

Заменим ускорение в уравнении (6.1) производной скорости по времени:

Векторная величина

принято называть импульсом тела .

Из формулы (6.3) следует, что направление вектора импульса совпадает с направлением скорости. Единица импульса - килограмм-метр на секунду (кг×м/c).

Объединяя выражения (6.2) и (6.3), получаем

Полученное выражение позволяет предложить более общую формулировку второго закона Ньютона: действующая на тело сила равна производной импульса по времени .

Всякое действие тел друг на друга носит характер взаимодействия (рис. 6.1). В случае если тело действует на тело с некоторой силой , то и тело в свою очередь действует на тело с силой .

Третий закон Ньютона формулируется следующим образом: взаимодействующие тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.

Эти силы, приложенные к разным телам, действуют по одной прямой и являются силами одной природы. Математическое выражение третьего закона Ньютона имеет вид

Знак "-" в формуле (6.5) означает, что векторы сил противоположны по направлению.

В формулировке самого Ньютона третий закон гласит: "Действию всœегда есть равное и противоположное противодействие, иначе - действия двух тел друг на друга между собою равны и направлены в противоположные стороны".

Раздел механики, изучающий движение материальных тел совместно с физическими причинами, вызывающими это движение, называется динамикой. Основные представления и количественные закономерности динамики возникли и развиваются на базе многовекового человеческого опыта: наблюдений за движением земных и небесных тел, производственной практики и специально поставленных экспериментов.

Великий итальянский физик Галилео Галилей экспериментально установил, что материальная точка (тело) достаточно удаленная от всех других тел (т.е. не взаимодействующая с ними) будет сохранять свое состояние покоя или равномерного прямолинейного движения. Это положение Галилея было подтверждено всеми последующими опытами и составляет содержание первого основного закона динамики, так называемого закона инерции. При этом покой следует рассматривать как частный случай равномерного и прямолинейного движения, когда .

Этот закон одинаково справедлив как для движения гигантских небесных тел, так и для движения мельчайших частиц. Свойство материальных тел сохранять состояние равномерного и прямолинейного движения называется инерцией.

Равномерное и прямолинейное движение тела при отсутствии внешних воздействий называется движением по инерции.

Система отсчета, по отношению к которой выполняется закон инерции, носит название инерциальной системой отсчета. Инерциальной системой отсчета практически точно является гелиоцентрическая система. В виду громадного расстояния до звезд, их движением можно пренебречь и тогда оси координат, направленные от Солнца на три звезды, не лежащие в одной плоскости, будут неподвижными. Очевидно, любая другая система отсчета, движущаяся равномерно и прямолинейно относительно гелиоцентрической системы, также будет инерциальной.

Физической величиной, характеризующей инертность материального тела, является его масса. Ньютон определил массу как количество вещества, содержащегося в теле. Это определение нельзя считать исчерпывающим. Масса характеризует не только инерцию материального тела, но и его гравитационные свойства: сила притяжения, испытываемая данным телом со стороны другого тела, пропорциональна их массам. Масса определяет полный запас энергии материального тела.

Понятие массы позволяет уточнить определение материальной точки. Материальной точкой называется тело, при изучении движения которого можно отвлечься от всех его свойств, кроме массы. Каждая материальная точка, следовательно, характеризуется величиной своей массы. В ньютоновской механике, в основе которой лежат законы Ньютона, масса тела не зависит от положения тела в пространстве, его скорости, действия на тело других тел и т.д. Масса является величиной аддитивной, т.е. масса тела равна сумме масс всех его частей. Однако свойство аддитивности утрачивается при скоростях, близких к скорости света в вакууме, т.е. в релятивистской механике.

Эйнштейн показал, что масса движущегося тела зависит от скорости

, (2.1)

где m 0 - масса покоящегося тела,  - скорость движения тела, с – скорость света в вакууме.

Из (2.1) следует, что при движении тел с малыми скоростями c масса тела равна массе покоя, т.е. m=m 0 ; при c масса m.

Обобщая результаты опытов Галилея по падению тяжелых тел, астрономические законы Кеплера о движении планет, данные собственных исследований Ньютон сформулировал второй основной закон динамики, количественно связавший изменение движения материального тела с силами, вызывающими это изменение движения. Остановимся на анализе этого важнейшего понятия.

В общем случае сила - есть физическая величина, характери-зующая действие, оказываемое одним телом на другое. Эта векторная величина определяется численной величиной или модулем
, направлением в пространстве и точкой приложения.

Если на материальную точку действуют две силы и, то их действие эквивалентно действию одной силы

,

получаемой из известного треугольника сил (рис.2.1). Если на тело действуют n-сил, суммарное действие эквивалентно действию одной равнодействующей, являющейся геометрической суммой сил:

. (2.2)

Динамическое проявление силы состоит в том, что под действием силы материальное тело испытывает ускорение. Статическое действие силы приводит к тому, что упругие тела (пружины) под действием сил деформируются, газы – сжимаются.

Под действием сил движение перестает быть равномерным и прямолинейным и появляется уско-рение (), направление его совпадает с направлением действия силы. Опыт показывает, что ускорение, полу-чаемое телом под действием силы, обратно пропорционально величине

его массы:

или
. (2.3)

Уравнение (2.3) представляет математическую запись второго основного закона динамики:

вектор силы, действующий на материальную точку численно равен произведению массы точки на вектор ускорения, возникающего при действии этой силы.

Поскольку ускорение

,

где
- единичные векторы,
- проекции ускорения на координатные оси, то

. (2.4)

Если обозначить , то выражение (2.4) можно переписать через проекции сил на координатные оси :

В системе СИ за единицу силы принимается ньютон.

Согласно (2.3) ньютон есть такая сила, которая массе в 1 кг сообщает ускорение 1 м/с 2 . Легко видеть, что

.

Второй закон Ньютона можно записать иначе, если ввести понятие импульса тела (m) и импульса силы (Fdt). Подставим в

(2.3) выражение для ускорения

,

получим

или
. (2.5)

Таким образом, элементарный импульс силы, действующий на материальную точку в течение промежутка времени dt, равен изменению импульса тела за тот же промежуток времени.

Обозначив импульс тела

,

получим следующее выражение для второго закона Ньютона:

.

В релятивистской механике при c основной закон динамики и импульс тела с учетом зависимости массы от скорости (2.1.) запишутся в следующем виде

,

.

До сих пор мы рассматривали лишь одну сторону взаимодействия между телами: влияние других тел на характер движения данного выделенного тела (материальной точки). Такое влияние не может быть односторонним, взаимодействие должно быть обоюдным. Этот факт отражается третьим законом динамики, сформулированным для случая взаимодействия двух материальных точек: если материальная точка m 2 испытывает со стороны материальной точки m 1 силу, равную , то m 1 испытывает со стороны m 2 силу , равную по величине и противоположную по направлению :

.

Эти силы действуют всегда вдоль прямой, проходящей через точки m 1 и m 2 , как показано на рисунке 2.2. Рисунок 2.2,а относится

к случаю, когда силы взаимодействия между точками являются силами отталкивания. На рисунке 2.2,б изображен случай при-тяжения.