Способ определения пестицидов в биологическом материале с использованием вэжх. Тонкослойная хроматография остаточных концентраций пестицидов в пищевых продуктах

ТОКСИКОЛОГІЯ ПЕСТИЦИДІВ

УДК 543?632.95]?636.085/.087

В.Д. Чмиль, д.б.н.

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ МЕТОДОВ АНАЛИЗА ОСТАТКОВ ПЕСТИЦИДОВ
(по материалам 10 Международного Конгресса ИЮПАК
по химии защиты растений)

Институт экогигиены и токсикологии им. Л.И. Медведя, г. Киев

С 4 по 9 августа 2002 г. в Базеле (Швейцария) проходил Международный Конгресс по химии защиты растений под эгидой Международного союза чистой и прикладной химии (IUPAC) (до 1998 года этот Конгресс был известен как Конгресс ИЮПАК по химии пестицидов). Этот Конгресс проходит раз в четыре года и является одним из знаменательных событий в календаре проведения встреч специалистов различных стран и научных дисциплин, работающих в области синтеза, использования и контроля химических средств защиты растений.

Научная программа Конгресса состояла из одного пленарного и шести секционных заседаний и более чем 20-ти постерных сессий, на которых были рассмотрены проблемы химии, биохимии и молекулярной биологии средств защиты растений от болезней, сорняков и вредителей, пестицидных формуляций и их применения, судьбы и поведения пестицидов в окружающей среде и их безопасного применения, остатков пестицидов и безопасности потребителей.

Тематика Конгресса, связанная с современным состоянием в области разработки методов анализа остатков пестицидов, которая была отражена в заказных секционных докладах и постерах, касалась следующих вопросов:
- хранение проб и стандартных растворов;
- подготовка проб к анализу;
- экстракция;
- очистка экстрактов;
- определение остатков пестицидов:
а) газожидкостная хроматография (ГЖХ);
б) высокоэффективная жидкостная хроматография (ВЭЖХ) и капиллярный электрофорез;
в) тонкослойная хроматография;
г) иммунохимический анализ;
- детектирование остатков пестицидов;
- методы анализа множественных остатков пестицидов;
- определение полихлорированных дибензодиоксинов (ПХДД) и полихлорированных дибензофуранов (ПХДФ);
- автоматические анализаторы.

Хранение проб и стандартных растворов . Очень часто отобранные пробы, содержащие остатки пестицидов, хранятся в течение какого-то времени до проведения анализа. Важно, чтобы в течение срока хранения не происходило разрушение остатков пестицидов. При изучении стабильности хранения отобранных проб воздуха на фильтр из стекловолокна и комбинированный фильтр из стекловолокна и смолы XAD-2, содержащих 9 карбаматных пестицидов, в течение 28 дней было показано, что карбофуран, изопрокарб, метомил и тиодикарб были стабильны в течение 28 дней, карбарил и оксамил были стабильны в течение 14 дней, а метиокарб и пропопоксур - в течение 7 дней .

Важным обстоятельством в анализе остатков пестицидов является стабильность действующих веществ пестицидных формуляций при хранении стандартных растворов. Например, с помощью ВЭЖХ было установлено, что растворы трибенурон-метила в ацетоне, этилацетате и ацетонитриле можно хранить при –20°С без разложения в течение 2-х месяцев . Хранение тех же растворов при 25°С в течение одной недели и двух месяцев привело к разложению трибенурон-метила на 16-24% и 82-98% соответственно. Хранение этих же растворов при 5°С привело к разложению 0,5% трибенурон-метила через неделю и около 4% после двух месяцев.

Подготовка проб к анализу . Перед взятием навески из пробы, доставленной в лабораторию для анализа, материал пробы должен быть гомогенизирован. Эта операция осуществляется с помощью дробления, размола, измельчения или смешения пробы. К сожалению, в отечественных исследованиях по разработке методик выполнения измерений (МВВ) микроколичеств пестицидов и использованию МВВ для определения остатков пестицидов, например, в овощах и фруктах, не всегда придается должное значение способу подготовки пробы для дальнейшего анализа и оборудованию, которое должно использоваться для этой операции. Недостаточно измельченная и гомогенизированная проба не позволит взять представительную навеску для анализа и приведет к низкому проценту извлечения (экстракции) анализируемых пестицидов. Так, например, сравнение способов подготовки проб овощей при определении манкоцеба с помощью электрического измельчителя (800 rpm) и ручного измельчения с помощью ножниц показало, что возврат прибавленных количеств манкоцеба составил 93 и 67% соответственно .


Поиск оптимальных методов анализа пестицидов – одна из важнейших проблем аналитической химии. С современных позиций к ним, в первую очередь, относятся капиллярная газовая хроматография (ГХ), высокоэффективная жидкостная хроматография (ВЭЖХ), тонкослойная хроматография (ТСХ) и капиллярный электрофорез (КЭ). Эти методы обладают высокой разделяющей способностью, необходимой при анализе многокомпонентных образцов, и высокой чувствительностью, позволяющей определять пестициды на уровне концентраций 1 мкг/дм 3 и ниже.

Выбор конкретного метода анализа во многом определяется самой аналитической задачей. К типичным задачам можно отнести следующие:

− определение пестицидов на разных стадиях их производства, приготовления готовых форм, при их хранении;

− определение остаточных количеств пестицидов в сельскохозяйственной продукции, в почве и в природных водах;

− определение пестицидов в биологических образцах;

− определение пестицидов в продуктах питания, в атмосфере, в питьевой воде.

Две последние задачи являются наиболее сложными, так как они требуют одновременного определения не заведомо известных веществ, а набора соединений из всего списка применяемых на практике пестицидов, количество которых превышает 1000 названий. Задачи такого типа иногда называют скриннинговыми. Их решают, главным образом, с помощью метода ГХ с масс-спектрометрическим детектированием (ГХ-МС), когда идентификация пестицидов осуществляется по заранее созданной библиотеке масс-спектров.

Учитывая большое разнообразие пестицидов при выборе методов их определения предпочтение, очевидно, надо отдавать «универсальным» методикам. Лаборатория, работающая по принципу «для каждого вещества свой метод анализа», может обеспечить высокую производительность лишь только по отношению к относительно малому количеству веществ. Переход от одной группы пестицидов к другой требует больших затрат времени на перестройку и калибровку приборов, приготовление стандартов и пр.

Рассматривая химико-аналитические методы с точки зрения их «универсальности» по отношению к анализу пестицидов, можно сделать следующие замечания.

Метод ТСХ достаточно чувствительный и простой в исполнении, однако в силу своей относительно невысокой разрешающей способности «универсальным»быть не может.

Метод ГХ обладает очень высокой разрешающей способностью, но его применение ограничивается термической лабильностью ряда пестицидов и необходимостью привлекать различные способы химической дериватизации многих пестицидов для повышения их летучести.

Метод капиллярного электрофореза, имея высокую разрешающую способность, не обеспечивает приемлемую концентрационную чувствительность и требует весьма высокую степень концентрирования образца, что часто нельзя осуществить из-за ограниченной растворимости пестицидов.

Метод ВЭЖХ обеспечивает для решения многих задач достаточное разрешение, не требует, как правило, предварительной дериватизации и пригоден для анализа термолабильных пестицидов. В сочетании с ГХ он позволяет решить практически все задачи, и именно эти два метода нашли наибольшее распространение в современной экологической аналитической химии.

Пестициды, как уже говорилось, отнесены к приоритетным экотоксикантам, и поэтому, должны находиться под постоянным контролем в объектах окружающей среды. Мониторинг пестицидов предусматривает их количественное определение в широком интервале концентраций, включающем уровень фона. Среди методов анализа, которые применимы к определению пестицидов, в первую очередь относятся высокоэффективные варианты газовой и жидкостной хроматографии.

Высокоэффективная жидкостная хроматография (ВЭЖХ) – один из самых информативных аналитических методов. Он широко используется во всех развитых странах, но, по сравнению с другими физико-химическими методами анализа, требует весьма высокой квалификации персонала, а стоимость одного анализа достигает нескольких десятков и даже сотен долларов США. Таким образом, упрощение самой процедуры ВЭЖХ-анализа и снижение ее стоимости предоставляется важной задачей.

Указанные недостатки ВЭЖХ обусловлены тем, что для каждого пестицида (или группы пестицидов) нормативные документы регламентируют свой «уникальный» вариант ВЭЖХ-анализа. Это приводит к необходимости часто перестраивать хроматограф, что занимает много времени и требует определенного опыта. Кроме того, аналитическая лаборатория, выполняющая анализы с привлечением многих разных методик, вынуждена содержать целый склад дорогостоящих колонок, органических растворителей и стандартных образцов пестицидов.

К пестицидам, определяемым в мировой практике методом ВЭЖХ, относятся труднолетучие и термолабильные соединения. К ним относятся атразин, симазин,хлорпрофам, линурон, хлортолурон, алахлор, трифлюоалин.

В анализе пестицидов используются особые методы пробоподготовки, которыепредставляется полезным рассмотреть более подробно.

Жидко-жидкостная экстракция (ЖЖЭ) – классический способ извлечения пестицидов из водных образцов. Обычно проводят повторяющуюся несколько раз экстракцию из 500–1000 мл водного образца в делительной воронке. Наиболее популярным растворителем является дихлорметан. Он способен экстрагировать соединения с различной полярностью и легко упаривается. Методы Агентства по охране окружающей среды США (ЕРА US) 8120 и 8140используют ЖЖЭ с помощью дихлорметана для определения в воде 15 хлорорганических и 21 фосфорорганических пестицидов. Для извлечения гербицидов – производных карбоновых кислот – исходную воду подкисляют до рН<2 и затем экстрагируют неионизованные молекулы диэтиловым эфиром или дихлорметаном.

Классическая ЖЖЭ трудно автоматизируется, требует больших объемов токсичных растворителей и весьма продолжительна по времени. Разделению слоев растворителей при анализе сильно загрязненных вод часто мешает образование устойчивых эмульсий. В таких случаях рекомендуют одиночную длительную ЖЖЭ делительной воронке объемом 1л c растворителем, тяжелее воды.

Хотя классическая ЖЖЭ имеет много недостатков, она продолжает совершенствоваться. Так появилась микроЖЖЭ, разработаная как альтернативный метод для определения гербицида алахлор и двух его метаболитов. Принцип микроЖЖЭ – экстракция из большого объема воды (400 мл) очень маленьким объемом растворителя (500 мкл толуола) – может быть применена в качестве подготовки пробы для анализа методом ГХ без стадии испарения, что важно для определения высоколетучих соединений. В сравнении с твердофазной экстракцией этот метод подготовки пробы быстрее и дешевле.

Большое число разных гербицидов (фенилмочевины, триазины, динитроанилины, хлорацетамиды и урацилы) экстрагируют из пищевых продуктов механическим встряхиванием или гомогенизацией с органическими растворителями, такими как метанол, ацетонитрил, часто смешанными с водой дихлорметаном или этилацетатом, иногда при кислом значении рН.

Высокополярные гербициды, такие как глифосат, нерастворимы в большинстве органических растворителей и их экстрагируют водой или водой с хлороформом, иногда при кислом значении рН. При этой процедуре другие растворимые в воде компоненты (аминокислоты, аминосахара и др.) экстрагируются также. Их присутствие мешает определению глифосатов и делает необходимой очистку экстрактов, которая чаще всего осуществляется на ионообменных хроматографических колонках.

Бипиридиновые пестициды (дикват и паракват – четвертичные аммониевые соединения) обычно экстрагируют из матриц дефлегмацией или нагреванием с серной или с соляной кислотами, после чего проводят твердо-фазную экстракцию и хроматографию.

Твердофазная экстракция (ТФЭ) как метод подготовки образцов известна уже 50 лет. Ее преимущества: экономия времени и растворителей, исключение опасности образования эмульсий, возможность выделения следовых количеств аналита, возможность автоматизации. Особенно часто ТФЭ применяют при анализе природных вод.

ТФЭ активно применяют для определения триазиновых пестицидов и продуктов их распада – гидрокси-s -триазинов, гербицидов – производных мочевины, N -метилкарбаматов и их полярных метаболитов, хлорорганических и фосфорорганических инсектицидов, полярных пестицидов пиретроидов, триазольных и пиримидиновых пестицидов. Разработаны методы ТФЭ многокомпонентных смесей, включающие большое число пестицидов различных классов. Для повышения эффективности экстракции полярных пестицидов иногда применяют колонки со смесью двух сорбентов, например фаз С18 и Фенил.

При ТФЭ кислот на фазах С18 для уменьшения потерь раствор образца целесообразно подкислить до рН<2. Для ТФЭ неионных соединений иногда применяют графитированные сорбенты и фазы, представляющие собой макросетчатые стирол-дивинилбензольные полимеры. Для пестицидов триазиновой группы, производных мочевины и группы феноксикислот успешно используют картриджи с активированной графитированной сажей Carbopack B , ионообменные смолы в ацетатной форме и фазу пропил-NH 2 . Для ТФЭ фосфорорганических пестицидов применяют мембранные диски из полистирол-дивинилбензола типа «XAD ».

Сверхкритическая жидкостная экстракция (СКЖЭ) является относительно новым методом, применяемым для извлечения веществ с помощью специальных экстрагентов – «сверхкритических» жидкостей. Такими экстрагентами могут быть жидкие СО 2 , NH 3 , пропан, бутан и др. Перечисленные газы переходят в жидкое состояние при высоких давлениях, поэтому СКЭЖ проводят в автоклавах. После окончания экстракции давление в автоклавах сбрасывают до атмосферного, газ-экстрагент улетает, и в автоклаве остаются только экстрагированные вещества. Их растворяют в подходящих растворителях и растворы анализируют.

СКЖЭ используется главным образом для анализа различных классов пестицидов в почвах, тканях животных и растений. Регулируют эффективность экстракции путем добавок к экстрагенту других растворителей. Наиболее распространенный сорастворитель, добавляемый к углекислоте – метанол. Его добавление позволяет преодолеть матричные эффекты, когда пестициды, прочно связанные с матрицей, чистой углекислотой не экстрагируются. Кроме этого, добавка метанола или ацетона повышает растворимость в углекислоте полярных соединений.

Прямая СКЖЭ редко используется для экстракции аналитов из водной матрицы. Ограничение метода связано с проблемой образования льда и с проблемой удаления воды

По окончании пробоподготовки количественное определение пестицидов осуществляют методом ВЭЖХ и часто с УФ-детектором.



Хроматографические методы продолжают оставаться основным инструментом аналитической химии пестицидов. По темпам развития среди них первые места занимают капиллярная газовая хроматография (ГХ), высокоэффективная жидкостная хроматография (ВЭЖХ) и хромато-масс-спектрометрия (ГХ/МС, ЖХ/МС). Капиллярная ГХ не имеет альтернативы при разработке методик определения множественных остатков пестицидов. p>Ряд пестицидов, используемых в сельском хозяйстве Украины, не может быть подвергнут непосредственному газохроматографичекому определению вследствие их низкой летучести или недостаточной термической стабильности. Для того, чтобы сделать возможным определение этих соединений с помощью ГХ их превращают в различные производные. Такая операция обычно повышает летучесть и уменьшает адсорбцию хроматографируемых соединений на твердых носителях, увеличивает их термостойкость и улучшает разделение. В некоторых случаях при этом достигается также и значительное увеличение чувствительности детектирования полученных производных. Все это является предметом реакционной газовой хроматографии. Нами впервые в отечественных исследованиях была показана эффективность использования реакционной газовой хроматографии в анализе пестицидов на примере определения остаточных количеств гербицидов - производных феноксиалканкарбоновых кислот (2,4-Д, 2,4-ДМ) в продуктах питания. С тех пор метод реакционной газовой хроматрографии широко используется в лабораториях Института при проведении государственных испытаний пестицидов и осуществлении государственной санитарно-гигиенической экспертизы. AAAAAAAAAAAAAAAAAAAAAAAAAAA

Метод ВЭЖХ продемонстрировал определенные преимущества при совместном определении пестицидов и их метаболитов в одной пробе. Это в особой степени касается тех пестицидов, которые невозможно определять с помощью ГХ вследствие их термической нестабильности, высокой полярности и низкой летучести. Использование ВЭЖХ в анализе пестицидов позволяет обойтись без трудоемкой операции получения производных. Институт одним из первых в Украине начал использование этого метода для определения пестицидов. В настоящее время ВЭЖХ - рутинный метод анализа во многих лабораториях Института. Особенно широко этот метод используется при проведении государственной санитарно-гигиенической экспертизы пищевых продуктов.

Перечисляя хроматографические методы, которые используются в анализе остатков пестицидов, нельзя не упомянуть и метод тонкослойной хроматографии (ТСХ), который был открыт в 1938 г. украинскими учеными Н.А.Измайловым и М.С.Шрайбер. Полуколичественный вариант ТСХ является и в настоящее время недорогим и эффективным методом разделения, идентификации и полуколичественного определения остатков пестицидов. Именно полуколичественный вариант ТСХ сыграл большую роль в становлении химико-аналитической службы Министерства здравоохранения Украины для контроля за содержанием остатков пестицидов в продуктах питания и объектах окружающей среды, когда методы ГХ и ВЭЖХ еще не были доступны для широкого использования. Во многом это произошло благодаря работам, выполненным в стенах Института. В настоящее время ТСХ в анализе остатков пестицидов в основном используется как альтернативный аналитический метод для подтверждения правильности идентификации пестицидов, полученной с помощью методов ГХ и ВЭЖХ. ТСХ незаменимый инструмент и в анализе остатков пестицидов, когда требуется проверить очень большое число проб пищевых продуктов или объектов окружающей среды на наличие пестицидов. В таких случаях обычно применяется методология скрининга. Все пробы, давшие "положительную" реакцию, далее исследуют каким-то более специфическим инструментальным методом (ГХ, ВЭЖХ, ГХ/МС, ЖХ/МС), в то время как все отрицательные результаты скрининга принимают как окончательные без какой-либо проверки. Институт распологает комплектом оборудования для количественной ТСХ (фирма КАМАГ, Германия). Тем не менее перспективы дальнейшего использования ТСХ в анализе пестицидов прежде всего следует связывать с полуколичественным вариантом этого метода. Альтернативы этому нет.

Каждый этап применения пестицидов в мировой сельскохозяйственной практике с конца 40-х годов прошлого столетия и до настоящего времени может быть охарактеризован своими собственными химико-аналитичесчкими проблемами. Однако одна проблема в анализе остатков пестицидов остается неизменной - необходимость постоянного снижения пределов количественного определения (limit of quantitafication, LOQ) пестицидов. Достижение очень низких пределов количественного определения при использовании МВИ сопровождается уменьшением уровня достоверности (надежности идентификации) результата анализа. Часто для того, чтобы достичь очень низких пределов количественного определения необходимо использовать сложную многостадийную процедуру очистки и стадию получения производных для того, чтобы можно было использовать высокоселективные и высокочувствительные детекторы (ЭЗД, ТИД). Однако это неизбежно сопровождается потерями анализируемого вещества в ходе этих операций, что приводит к увеличению ошибки анализа. Кроме этого свой вклад вносит также непостоянство состава анализируемой матрицы от пробы к пробе. В связи с этим химик-аналитик не всегда может удовлетворить желание гигиениста и токсиколога иметь МВИ с очень низкими пределами количественного определения вследствие технических возможностей используемых приборов и методических ограничений разрабатываемой МВИ. При разработке МВИ химик-аналитик свои усилия должен фокусировать не только на достижении низких пределов количественного определения анализируемых пестицидов, но не упускать из поля зрения более важные аспекты анализа остатков пестицидов: надежность идентификации и воспроизводимость результатов. Известно, что в настоящее время в Украине в некоторых сельскохозяйственных культурах и продуктах питания содержание пестицидов не допускается (так называемые zero tolerances) или находится на уровне предела обнаружения (limit of detection, LOD), т. е. любые детектируемые остатки пестицидов считаются недопустимыми. Для таких случаев первостепенное значение приобретает надежность идентификации пестицида, а не точное количественное определение его содержания, поскольку уже сам факт обнаружения пестицида является основанием для запрещения использования сельскохозяйственного сырья или продукта питания. В этих случаях применение полуколичественного варианта ТСХ является вполне оправданным при условии, что при этом достигается надежная идентификация определяемого пестицида.

Понимая, какое важное значение в анализе остатков пестицидов имеют вопросы, связанные с повышением надежности идентификации определяемых соединений, нами были предприняты систематические исследования по изучению межмолекулярных взаимодействий хлор- и азотсодержащих пестицидов в условиях газовой и жидкостной хроматографии. При этом было впервые установлено существование корреляционных зависимостей между параметрами удерживания членов гомологических рядов сорбатов, полученных при использовании хроматографических методов с различными механизмами сорбции. Эффективность использования таких зависимостей для повышения надежности идентификации пестицидов была продемонстрирована на примере гомологических рядов хлоралканкарбоновых и хлорфеноксиалканкарбоновых кислот и их эфиров, хлорфенолов, замещенных фенилмочевин, нитрофенолов и нитрофенольных соединений, замещенных бензойных кислот, симм-триазинов, эфиров тиокарбаминовой кислоты.

Введение

Глава 1. Существующие способы определения содержания пестицидов в анализируемых объектах (обзор литературы)

1.1. Пробоподготовка с использованием твердофазной экстракции 6

1.2. Методы качественной характеристики пестицидов 16

1.3. Количественный анализ пестицидов 20

Глава 2. Техника и условия эксперимента

2.1. Определение коэффициентов распределения пестицидов в системе гексан/ацетонитрил с использованием газожидкостной и обращенно-фазовой высокоэффективной жидкостной хроматографии 24

2.2. Определение степени извлечения пестицидов из модельныхводных растворов с использованием твердофазной экстракции 30

2.3. Определение линейно-логарифмических индексов удерживания и относительных оптических плотностей пестицидов в обращенно-фазовой высокоэффективной жидкостной хроматографии 32

2.4. Количественная оценка содержания пестицидов в растительных объектах методами внешнего стандарта и стандартной добавки 34

2.5. Определение содержания пестицидов в реальных растительных объектах.39

Глава 3. Оценка степени извлечения пестицидов из модельных водных растворов в условиях твердофазной экстракции на основании их коэффициентов распределения в системе гексан/ацетонитрил и параметров гидрофобности

3.1. Особенности использования обращенно-фазовой высокоэффективной жидкостной хроматографии при определении коэффициентов распределения пестицидов в системе гексан/ацетонитрил 42

3.2. Оценка параметров гидрофобности потенциальных фосфорорганических пестицидов по их индексам удерживания в обращенно-фазовой высокоэффективной жидкостной хроматографии 48

3.3. Оценка связи степени извлечения пестицидов из водных растворов при проведении твердофазной экстракции с их коэффициентами в системах октанол/вода и гексан/ацетонитрил 59

Глава 4. Интерпретация результатов идентификации и количественного определения пестицидов в растительных объектах

4.1. Выбор оптимальных аналитических параметров для хроматографической характеристики пестицидов 63

4.2. Сравнение методов внешнего стандарта и стандартной добавки для оценки содержания пестицидов в растительных объектах 71

Список литературы 92

Приложения 105

Введение к работе

Широкое использование химических средств защиты растений ставит анализ пестицидов в сельскохозяйственной продукции и объектах окружающей среды в ряд приоритетных задач эколого-аналитического контроля . В связи с этим, а также с новыми требованиями, предъявляемыми Ростехрегулированием к методам контроля , возникает необходимость в совершенствовании старых и разработке новых методик определения микроколичеств пестицидов [с применением газожидкостной (ГЖХ) и высокоэффективной жидкостной (ВЭЖХ) - хроматографии], в которых бы сочетались простота процедуры определения с максимальной надежностью получаемых результатов. Успешному решению этой задачи могут помочь новые подходы в определении следовых количеств экотоксикантов.

Важнейшими этапами проведения анализа пестицидов являются: подготовка проб и заключительная интерпретация данных, включающая как качественную, так и количественную характеристику анализируемых соединений. Подготовка проб к анализу обычно состоит из экстракции, повторной экстракции и очистки на колонке. Твердофазная экстракция (ТФЭ) представляет собой альтернативный подход в ее проведении. Она сводит ряд вышеупомянутых процедур в одну, что позволяет экономить время и реактивы. Однако для оптимизации процесса ТФЭ требуется некоторая информация о целевых веществах, в частности, об их коэффициентах распределения в гетерофазных системах растворителей 1-октанол/вода (log Р) и гексан/ацетонитрил (К р). В справочной литературе по пестицидам наряду с другими физико-химическими характеристиками приведены значения log Р пестицидов . Тем не менее, проблема их определения до сих пор остается актуальной из-за существующих трудностей, возникающих в процессе определения. Главная из них -

образование медленно расслаивающихся эмульсий обоих растворителей друг в друге. Это отражается в низкой межлабораторной воспроизводимости величин log Р пестицидов . Поэтому представляется важной систематическая характеристика пестицидов различных химических групп, прежде всего их коэффициентами распределения в системах октанол/вода и гексан/ацетонитрил, а также индексами удерживания в обращенно-фазовой высокоэффективной жидкостной хроматографии [ИУ (ВЭЖХ)]. Последние могут быть использованы не только для идентификации анализируемых соединений, но и для оценки их параметров гидрофобности. Расширение подобной базы данных физико-химических характеристик пестицидов и круга характеризуемых соединений поможет с одной стороны полноценному проведению пробоподготовки, с другой - их идентификации. Однако для однозначной и надежной качественной характеристики недостаточно одного из имеющихся параметров. Необходимо оценить информативность различных сочетаний аналитических параметров пестицидов, что позволит с максимальной надежностью решить проблему их идентификации.

Заключительной стадией анализа после пробоподготовки и качественной характеристики анализируемых соединений является количественная оценка их содержаний в исследуемых образцах. Существующие способы количественного хроматографического анализа пестицидов (абсолютная градуировка, метод внутреннего стандарта) нельзя назвать оптимальными. Метод абсолютной градуировки при наличии систематических погрешностей пробоподготовки (как правило, из-за потерь искомых веществ на разных стадиях) без введения поправочных коэффициентов приводит к заниженным результатам, а применение метода внутреннего стандарта ограничено поиском необходимого стандартного соединения и предварительной дополнительной, трудоемкой процедурой специальной подготовки проб для проведения определения.

6 Таким образом, целью настоящей работы являлись совершенствование существующих и разработка новых методик определения пестицидов в растительных объектах. Для решения этой задачи необходима оптимизация каждого из основных этапов анализа пестицидов. Предлагаемая оптимизация включает: использование ТФЭ на стадии пробоподготовки, а при заключительной интерпретации данных - выбор наиболее оптимального сочетания аналитических параметров для хроматографической идентификации пестицидов, а так же выбор и использование метода количественной их оценкой позволяющей минимизировать систематические погрешности определений.

Методы качественной характеристики пестицидов

Идентификацию пестицидов (как и любых других органических веществ) при проведении хроматографического анализа (ГЖХ и ВЭЖХ) часто осуществляют по параметрам удерживания [абсолютные и относительные времена удерживания, индексы удерживания (линейные, логарифмические, линейно-логарифмические )] на различных по полярности фазах (ГЖХ) или в различных режимах элюрования (ВЭЖХ). Проведение качественного анализа пестицидов по абсолютным временам осуществляют в строгого заданных условиях, на одном и том же приборе с использованием необходимых стандартных (эталонных) соединений. Менее зависимые от конкретных условий анализа являются относительные времена удерживания (времена удерживания относительно какого-либо стандартного вещества). Они обладают значительно большей воспроизводимостью в изотермических условиях разделения (ГЖХ) и изократическом режиме элюирования (ВЭЖХ). Их можно использовать для сравнения данных, полученных в разных стационарных режимах, на разных приборах, в разных лабораториях. Однако характер неподвижных фаз (ГЖХ), тип колонок и состав элюента (ВЭЖХ) должен оставаться при этом фиксированным. В качестве стандартного соединения рекомендуется выбирать соединение того же класса, что и определяемое. Если же определять параметры удерживания (индексы удерживания (ИУ)) относительно двух стандартов, причем один из которых имеет меньшее, а другой большее время удерживания, чем искомое соединение, то они будут характеризоваться еще большей межлабораторной воспроизводимостью, чем относительные времена удерживания. Индексы удерживания могут быть представлены в линейной, логарифмической и линейно-логарифмической форме. Индексы удерживания в логарифмической форме используют в изотермическом режиме (ГЖХ) или изократическом режиме элюирования (ВЭЖХ). В случае анализа сложных смесей в условиях программированного изменения температуры колонки (ГЖХ) применяют линейные индексы удерживания. Однако как показано в наилучшей формой представления параметров удерживания в этих условиях являются линейно-логарифмические индексы удерживания. Их преимущество заключается в высокой воспроизводимости как в режиме линейного программирования температуры, так и изотермическом режиме (ГЖХ), а так же при различных режимах элюирования (изократический, градиентный) подвижной фазы в ВЭЖХ . Индексы удерживания нашли применение не только в анализе пестицидов, но и других загрязняющих органических веществ . Однако использование хроматографических параметров удерживания связано с неоднозначностью оценок. Это обусловлено реальной возможностью их совпадения с параметрами удерживания коэкстрактивных веществ, обычно присутствующих в пробе (коэкстрактивные вещества - соединения извлекаемые из матрицы вместе с аналитом).

Другой способ идентификации веществ основан на применении селективных детекторов. Газохроматографический анализ пестицидов осуществляют при использовании трех селективных детекторов -термоионный и пламенно-фотометрический детекторы применяют в анализе азот-, фосфор-, серосодержащих соединений, а детектор электронного захвата - в анализе галогенсодержащих веществ. Использование альтернативных детекторов ограничено тем, что хотя некоторые иззарегистрированы с необходимой чувствительностью. Анализ пестицидов в условиях обращенно-фазовой ВЭЖХ проводят практически с одним селективным ультрафиолетовым (УФ) детектором, избирательность которого регулируется выбором фиксированных длин волн. Применение диодных матриц дает возможность регистрации поглощения на нескольких длинах волн, обеспечивая тем самым большую вероятность качественной характеристики пестицидов .

Одними из наиболее надежных путей идентификации экотоксикантов являются гибридные методы, основанные на хроматогафическом разделении анализируемых веществ и последующей идентификацией с использованием спектральных (масс-, инфракрасных-, атомно-эмиссионных) детекторов . В этом случае, помимо хроматограмм с определяемыми параметрами удерживания, регистрируют соответствующие (масс-, инфракрасные-, атомно-эмиссионные) спектры соединений. Тем не менее, как отмечено в , «ни один из известных аналитических методов не может гарантировать надежную идентификацию любых соединений». К этому следует добавить, что использование гибридных методов ограничено дорогостоящим аппаратурным оснащением.Достоинства и ограничения каждого из используемых методов качественной характеристики пестицидов иллюстрирует таблица 1.2.

Определение линейно-логарифмических индексов удерживания и относительных оптических плотностей пестицидов в обращенно-фазовой высокоэффективной жидкостной хроматографии

В работе использованы пестициды, перечень которых представлен в таблице 2.1., а также соединения (1-23) с общей структурной формулой RRP(=X)SR (таблица 2.2.), синтезированные в Институте элементорганических соединений (Москва) , физико-химические свойства которых охарактеризованы в . Разделение соединений методом обращенно-фазовой ВЭЖХ проводили на жидкостном хроматографе «Waters» с колонкой Nova-Рас Qg (3,9 х 150 мм) и УФ-детектированием при длинах волн 220 и 254 нм. В качестве подвижной фазы использовали смесь ацетонитрила с водой, расход элюента 1 мл/мин. Анализ проводили в градиентном режиме элюирования с начальной концентрацией CH3CN, равной 10%, и скоростью ее изменения 1,5 % в минуту. Мертвое время системы определяли дозированием раствора бромида калия (220 нм). Регистрацию времен удерживания осуществляли с помощью программного обеспечения «Millennium». Для определения значений ИУ в образцы вводили смесь реперных н-алкилфенилкетонов PhCOCnH2n+i (n = 1-3,5). Линейно-логарифмические индексы удерживания [ИУ(ВЭЖХ)] рассчитывали с использованием программы (QBasic), приведенной в руководстве . Для вычисления значений ИУ (ВЭЖХ) соединений, имеющих меньшие, чем у первого реперного компонента (ацетофенон) времена удерживания, применяли алгоритм экстраполяции времен удерживания, охарактеризованный в . Для определения относительных оптических плотностей Аотн.= А(254)/А(220) хроматограммы параллельно регистрировали на двух указанных длинах волн с последующим вычислением отношений площадей пиков Аот„= S(254)/S(220). Расчет параметров уравнения линейной регрессии вида: log Р = al +b, где / - индексы удерживания веществ в обращенно-фазовой ВЭЖХ, a, b -коэффициенты уравнения; осуществляли с помощью программного обеспечения Origin for Windows.

Оценки значений log Р по аддитивным схемам (исходя из инкрементов log Р молекулярных фрагментов ) проводили с использованием программного обеспечения ACD и CS ChemDraw Ultra. Особенности количественной оценки содержания пестицидов в растительных объектах [огурцы (замороженные), солома, колосья, зерно] характеризовали на примере трех соединений: диметоата, пиримикарба и малатиона. Стандартные растворы пестицидов в ацетоне (х.ч.) с концентрацией 0,1 мг/мл (и 0,01 мг/мл для диметоата) готовили путем разведения исходных основных растворов с концентрацией 1 мг/мл и максимально равномерно вносили (1-2,5 мл) в необработанные (контрольные) растительные образцы с последующим встряхиванием и перемешиванием в течение 5 мин. Отсутствие определяемых пестицидов в контрольных образцах подтверждали экспериментально при использовании Подготовку проб для дальнейшего хроматографического анализа осуществляли двумя способами: с проведением ЖЭ (огурцы, солома, колосья, зерно) и с использованием ТФЭ (огурцы) Пробоподготовка с использованием жидкостной экстракции. Подготовку проб, содержащих диметоат и малатион, проводили по методике группового определения фосфорорганических пестицидов . Она включала экстракцию пестицидов из огуречных проб 50% водным ацетоном (для повышения эффективности экстракции использовали ультразвуковую ванну).

Полученные экстракты фильтровали через бумажный фильтр. Осадок на фильтре промывали 50% водным ацетоном. Повторную экстракцию пестицидов из водно-ацетоновых растворов осуществляли дихлорметаном (три раза по 30 мл). Дихлорметановые растворы сушили, пропуская их через слой безводного сульфата натрия (ч.д.а.) и упаривали досуха в вытяжном шкафу при комнатной температуре в токе воздуха. Сухой остаток растворяли в 10 мл гексана и хроматографировали. Подготовку проб, содержащих пиримикарб, проводили с использованием методики, приведенной в . Она основана на извлечении пестицида из анализируемых объектов 0,1 н раствором соляной кислоты. Полученные экстракты подщелачивали 1 н раствором едкого натра до рН 8-10 и реэкстрагировали пиримикарб хлороформом (двумя порциями по 75 мл). Хлороформные экстракты сушили, пропуская их через слой безводного сульфата натрия, и упаривали досуха в вытяжном шкафу при комнатной температуре в токе воздуха. Сухой остаток растворяли в 10 мл гексана и хроматографировали. Пробоподготовка с использованием твердофазной экстракции. Пестициды из анализируемых проб экстрагировали 50% водным ацетоном (на ультразвуковой ванне). После фильтрации водно-ацетоновых растворов и промывки осадка на фильтре (50% водным ацетоном), ацетон из объединенных экстрактов полностью упаривали. Оставшиеся водные растворы снова фильтровали через бумажный фильтр. Перед тем, как использовать в работе отечественные сорбенты Диапак С16 (партия № 1002), их активировали (активация патронов см. выше п. 2.2.). После этого прокачивали через патроны, анализируемые водные растворы со скоростью не более 2 мл/мин, создавая разрежение на выходе водоструйным насосом. Затем патроны сушили 30 минут в токе гелия. В качестве элюирующих растворителей использовали: гексан (20 мл), дихлорметан (20 мл) и ацетон (15 мл). Элюаты упаривали досуха в вытяжном шкафу при комнатной температуре.

Остатки после упаривания растворяли 10 мл гексана и хроматографировали. Газохроматографический анализ при совместном присутствии диметоата, пиримикарба и малатиона выполняли с использованием прибора «Цвет 55ОМ», укомплектованного термоионным детектором и стеклянной колонкой 2 м х 3 мм, заполненной 5% SP 2100 на Хромосорбе W (0,200 -0,250 мм). Температура колонки 220, испарителя 250, детектора 390С. Расход газа-носителя (азота) - 30 мл/мин, водорода 14 мл/мин, воздуха 200 мл/мин. Газохроматографический анализ диметоата проводили на приборе «Цвет 550М» с термоионным детектором и стеклянной колонкой 1 м х 3 мм, заполненной 5% SE-30 на Хроматоне N Super (0,125 - 0,160 мм). Температура колонки 200, испарителя 240, детектора 320С. Расход газа-носителя (азота) - 28 мл/мин, водорода 14 мл/мин, воздуха 200 мл/мин. Для дозирования проб (1 мкл) использовали микрошприц «Hamilton». Количественную оценку содержания пестицидов в анализируемых образцах с использованием метода внешнего стандарта осуществляли по уравнению (во всех случаях анализируемые объемы были одинаковы и составляли 10 мл):

Оценка параметров гидрофобности потенциальных фосфорорганических пестицидов по их индексам удерживания в обращенно-фазовой высокоэффективной жидкостной хроматографии

Среди различных свойств органических соединений коэффициенты распределения в системе 1-октанол/вода (log Р) занимают особое место. Этот параметр, предложенный как мера гидрофобности органических соединений , используют для различных целей. Одной из них является прогнозирование поведения экотоксикантов в объектах окружающей среды . Рассмотрение известных данных по деградации пестицидов в растениях и почве свидетельствуют об отчетливо выраженной зависимости продолжительности их обнаружения в таких объектах от параметров гидрофобности. Так, например, сравнительная характеристика пиретроидов и фосфорорганических пестицидов (значения log Р пиретроидов в среднем на 2-4 единицы больше, чем для ФОП) свидетельствуют о более длительном сохранении пиретроидов в различных сельскохозяйственных культурах (на 1-2 недели больше), несмотря на существенно меньшие (в несколько раз) нормы расходов. Даже в пределах одного класса соединений хорошо прослеживается зависимость продолжительности регистрации пестицидов в почве от их гидрофобности.

Например, более гидрофобные ФОП (log Р 3-4) обнаруживаются на 5-15 суток дольше, чем менее гидрофобные (log Р 1). Кроме оценки и предсказания поведения пестицидов в различных объектах окружающей среды, значения log Р могут быть использованы в качестве одного из критериев отбора новых перспективных средств защиты растений. Так, полагают , что инсектицидная активность фосфорорганических соединений также коррелирует с их гидрофобностью, и, таким образом, значения log Р, могут оказаться полезными при поиске новых инсектицидов. При проведении пробоподготовки с использованием ТФЭ на модифицированных силикагелях, как отмечено в обзоре литературы, эффективность экстракции пестицидов ряд авторов связывают с их гидрофобностью. Поэтому данный параметр представляет интерес не только для характеристики экологического поведения или для поиска новых перспективных пестицидов, но и с аналитических позиций. Экспериментальное определение log Р в системе 1-октанол/вода связано со значительными трудностями, главной из которых следует считать образование медленно расслаивающихся эмульсий обоих растворителей друг в друге. Это приводит к неоправданно длительному установлению равновесия, отсутствие которого проявляется в низкой межлабораторной воспроизводимости значений log Р для многих веществ (некоторые оценки на примере пестицидов см. в ). Известные методы определения log Р можно условно разделить на две группы - прямые и косвенные.

Прямые методы основаны на непосредственном измерении равновесных концентраций веществ в обеих (или в одной, чаще всего - водной) сосуществующих фазах. Классическим примером таких способов является широко распространенный метод «встряхивания колбы» , позволяющий определять значения log Р в диапазоне от -2,5 до +4,5. Однако в ряде случаев межлабораторная воспроизводимость получаемых с его помощью данных достигает ± 1,3 единиц log Р . Другие же методы определения log Р либо длительны , либо требуют использования специального оборудования . Сложности непосредственного измерения значений log Р привели к появлению большого количества косвенных методов их оценки. Одни из них основаны на расчете log Р по аддитивным схемам (исходя из инкрементов log Р молекулярных фрагментов , в том числе с помощью современного программного обеспечения (ACD или CS ChemDraw), другие предполагают использование двухпараметровых уравнений линейной регрессии вида (8), коэффициенты которых вычисляют методом наименьших квадратов по наборам данных для ранее охарактеризованных веществ:

В число параметров А включают как молекулярные характеристики -поляризуемость (молекулярная рефракция), потенциал ионизации, дипольный момент , так и некоторые физико-химические константы - температура кипения, растворимость в воде (только в пределах гомологических рядов) , а также экспериментально определяемые параметры удерживания в обращенно-фазовой ВЭЖХ (обычно используют логарифмы факторов удерживания или коэффициентов емкости log к1) . Несмотря на большое число примеров характеристики гидрофобности сорбатов по значениям log к (ВЭЖХ), такие хроматографические инварианты как индексы удерживания, менее зависимые от условий разделения, чем коэффициенты емкости, для этих целей до настоящего

Сравнение методов внешнего стандарта и стандартной добавки для оценки содержания пестицидов в растительных объектах

Оценка уровня содержания пестицидов в растительных объектах является ответственным и заключительным этапом в определении следовых количеств экотоксикантов. В обзоре литературы отмечено, что для этой цели используют два метода количественного хроматографического анализа: наиболее популярный - метод внешнего стандарта (разновидность метода абсолютной градуировки) и метод внутреннего стандарта. Широкое использование метода внешнего стандарта вероятно связано с простой процедурой определения.

Она заключается в анализе растворов стандарта и пробы, полученной из целевого образца с дальнейшим определением концентрации пестицида по пропорции: где Сх, Сст. - концентрации аналита в исследуемом и стандартном растворах; Мх, Мет. - количество аналита в исследуемом и стандартном растворах (при равенстве их объемов); Рх, Рст# - площадь (высота) пика аналита в исследуемом и стандартном растворах, Оценку случайной составляющей погрешности результатов количественного определения методом внешнего стандарта проводят по соотношениям: где 5СХ, 5Сст., - погрешности определения и задания концентраций пестицида в анализируемом и стандартном растворах; 5МХ, 8МСТ. погрешности определения и задания количеств пестицида в анализируемом и стандартном растворах (при равенстве их объемов); 8РХ, SPSCT. - погрешности определений площадей (высот) пиков пестицида в исследуемом и стандартном растворах. Однако на разных стадиях полготовки проб к хроматографическому анализу могут наблюдаться значительные потери пестицидов, что приводит к снижению их концентрации в конечном исследуемом растворе, и как следствие этого, к заниженным результатам определений. В обзоре литературы отмечено также, что метод внутреннего стандарта позволяет уменьшить влияние систематической погрешности на конечные результаты анализов. Его преимущество при этом было бы неоспоримо, если бы не возникали затруднения при выборе внутренних стандартов. В тоже время, такая разновидность метода внутреннего стандарта как метод стандартной добавки до настоящего времени не нашла своего применения для оценки содержания пестицидов в растительных (и других) объектах. Этот способ предусматривает использование в качестве внутреннего стандарта самого определяемого соединения. Для установления его содержания в образце (Сх) необходим анализ двух проб: исходной пробы и пробы после введения в нее известного количества стандартной добавки.

По простой пропорции (при равенстве анализируемых объемов), связывающей прирост хроматографического сигнала с добавкой исследуемого соединения, определяют его первоначальное содержание в образце: определяемое количество аналита в исходном образце; МДОб. -добавка образца сравнения; Рх, Рх+ДОб. - площади (высоты) пиков аналитов в образцах, соответствующих исходной пробе и пробе с добавкой;.т - масса исходного образца, V - объем анализируемого образца. Случайную погрешность результатов количественных определений (5МХ) методом стандартной добавки (при 8МДОб « SP и SV« 8 МДОб.) можно оценить по соотношению: где 8РХ, 8Рх+ДОб - погрешности определений площадей (высот) пиков аналитов в исходной пробе и пробе с добавкой. Сопоставление выражений (15) и (16) показывает, что случайная составляющая погрешности определений методом стандартной добавки при Рх Рх+доб будет больше, чем методом внешнего стандарта так как (Рх+ДОб / (Рх+доб - Рх) » 1, но при Рх+доб » Рх и, следовательно, Рх+доб / (Рх+Доб - Рх) « 1 они сравнимы по величине. Кроме того, ее дополнительным источником является двукратное увеличение числа экспериментальных операций при пробоподготовке. Тем не менее, уменьшение влияния систематической погрешности при использовании метода стандартной добавки (также как и в методе внутреннего стандарта), как правило, позволяет существенно снизить суммарную погрешность определений. Затраты времени на выполнение хроматографических определений методами внешнего стандарта и стандартной добавки примерно одинаковые. Однако число операций пробоподготовки при использовании метода стандартной добавки удваивается

Кочмола, Николай Максимович

Обращенно-фазовый вариант ВЭЖХ (ОФ ВЭЖХ) имеет ряд преимуществ перед другими вариантами жидкостной хроматографии:

это очень гибкий метод, так как, изменяя состав водноорганических смесей, используемых в качестве подвижной фазы, можно на одной колонке обеспечить разделение соединений различной природы;

селективность данного метода почти всегда значительно выше, чем других вариантов хроматографии для всех соединений, кроме сильнополярных

при использовании гидрофобизированных силикагелей быстро устанавливается равновесие между подвижной и неподвижной фазой, эти сорбенты отличаются высокой эффективностью разделения;

можно осуществлять разделение соединений, растворимых как в воде, так и в органических растворителях;

возможность использования в подвижной фазе буферных растворов может улучшить селективность и эффективность разделения ионогенных соединений.

В обращенно-фазовой хроматографии неподвижной фазой служат гирдофобизированные силикагели, которые получают при обработке силикагеля хлор- и алкоксисиланом. Широко в аналитической практике используют гидрофобизированные силикагели с привитыми октадецильными группами (С18 ) Плотность прививки составляет 1,1- 2,3 нм-2 .

В зависимости от способа обработки свойства гидрофобизированных силикагелей могут изменяться, поэтому свойства коммерческих колонок различных фирм несколько отличаются. Содержание углерода составляет 5-20%. Степень покрытия поверхности силикагеля органическим модификатором составляет 10-60%, в лучших случаях она достигает 90%. Наличие остаточных силанольных групп приводит к тому, что

адсорбционный и ионообменный механизмы удерживания всегда сопутствуют обращенно-фазовому. Для уменьшения числа силанольных групп сорбенты дополнительно обрабатывают триметилхлорсиланом (это называют эндкеппингом). В табл. 12 представлены типичные обращеннофазовые сорбенты. Наиболее популярными являются силикагели следующих торговых марок: бондопак, лихросорб, порасил, сепарон, сферисорб, нуклеосил, кромасил. Недостатками обращенно-фазовых сорбентов на основе силикагеля являются ограниченно допустимый диапазон рН и сорбционная активность силанольных групп. Этого недостатка в значительной степени лишены колонки нового поколения фирмы «Феноминекс», ее колонка Луна С18 обладает стабильностью в диапазоне значений рН 1,5-10.

Механизм разделения соединений в этом варианте хроматографии пока до конца неясен. Наиболее удачными и распространенными являются теория, использующая представления о параметрах растворимости Гильдебранта, и сольвофобная теория Хорвата-Меландера. По теории, основанной на параметрах растворимости Гильдебранта, удерживание определяется молекулярными взаимодействиями разделяемых веществ с подвижной и неподвижной фазой. Зависимость фактора емкости вещества от состава подвижной фазы описывается уравнением

lnk = Aφ2 + Bφ + C (12),

где φ – объемная доля органического компонента (модификатора) в подвижной фазе, А, В и С – константы.

Однако поведение соединений сложного строения с несколькими функциональными группами часто не удается описать данной зависимостью. Более адекватно закономерности удерживания сорбатов в ОФ ВЭЖХ описываются сольвофобной теорией. Хорвартом и Миландером впервые было показано, что водные элюенты, не содержащие

Таблица 12. Сорбенты для обращенно-фазовой ВЭЖХ

Sp , м2 /г

Форма частиц

частиц, мкм

Адсорбсил С8

Нерегулярная

Адсорбсил С18

Нерегулярная

Адсорбсфер С8

Сферическая

Адсорбсфер С18

Сферическая

Алтима С8

Сферическая

Алтима С18

Сферическая

АльфаБонд С8

Нерегулярная

АльфаБонд С18

Нерегулярная

М-Бондопак С18

Нерегулярная

М-Бондопак Фенил

Нерегулярная

Гиперсил С8

Сферическая

Гиперсил ОДС

Сферическая

Зорбакс С8

Сферическая

Зорбакс ОДС

Сферическая

Диасорб-130-С1

Нерегулярная

Диасфер 130-С8

Сферическая

Диасфер-130-С18Т

Сферическая

Лихросорб RP-2

Нерегулярная

Лихросорб RP 18

Сферическая

Сферическая

Сферическая

Нуклеосил С18

Сферическая

Партисил ОДС-3

Нерегулярная

Сепарон С18

Сферическая

Силасорб С2

Нерегулярная

Силасорб С8

Нерегулярная

Силасорб С18

Нерегулярная

Сферическая

Сферисорб С18

органических растворителей, могли быть использованы для разделения полярных биологических молекул на октадецилсиликагеле. Даже при отсутствии органического компонента в элюенте, взаимодействие между растворенным веществом и привитыми углеводородными радикалами

неподвижной фазы, являлось причиной удерживания растворенного вещества. Что позволило сделать вывод о том, что удерживание в обращено-фазовом варианте в основном определяется гидрофобными взаимодействиями.

Важнейшую роль в понимании механизма удерживания обращеннофазовой хроматографии сыграли работы Хорвата и его школы. Суть теории Хорвата заключается в следующем. Существует принципиальное различие между процессами сорбции на полярных поверхностях из относительно неполярных растворителей («нормально-фазовый режим») и сорбции из воды либо сильнополярных растворителей на неполярных поверхностях («обращенно-фазовый режим»). В первом случае, между молекулами сорбатов и неподвижных фаз образуются ассоциаты за счет кулоновских взаимодействий или водородных связей. Во втором случае, причиной ассоциации на поверхности являются так называемые сольвофобные взаимодействия в подвижной фазе. Для полярных подвижных фаз, в особенности содержащих воду, характерно сильное кулоновское взаимодействие и образование водородных связей между молекулами растворителей. Все молекулы в таких растворителях связаны довольно прочно межмолекулярными силами. Для того чтобы поместить в эту среду молекулу сорбата, необходимо образование «полости» между молекулами растворителя. Энергетические затраты на образование такой «полости» лишь частично покрываются за счет взаимодействия полярных групп в молекуле сорбата с полярными молекулами растворителя. В аналогичном положении по отношению к растворителю находятся и неполярные молекулы неподвижной фазы. С энергетической точки зрения более выгодно такое положение, когда поверхность раздела между полярной средой (растворителем) и неполярными фрагментами неподвижной фазы и молекул сорбата минимальна. Уменьшение этой поверхности и достигается при сорбции (рис. 15).

Рис. 15. К механизму обращенно-фазовой хроматографии: а - сорбат в растворе; б - сорбат на поверхности неподвижной фазы. Молекулы воды и органического растворителя обозначены светлыми и темными кружками соответственно.

Обращенно-фазовая хроматография широко применяется не только для разделения нейтральных соединений, но и ионогенных веществ. В принципе, и для таких соединений процесс сорбции описывается сольвофобной теорией. Однако сорбаты такого рода существуют в растворе и адсорбированном состоянии, как в виде нейтральных молекул, так и в виде ионов. Каждой из этих форм соответствует свое значение фактора удерживания. В зависимости от рН среды изменяются соотношение различных форм в растворе и факторы удерживания.

В качестве подвижной фазы обычно используют смеси растворителей, т.к. это позволяет улучшить селективность и эффективность разделения и уменьшить время необходимое для его проведения.

Меняя состав подвижной фазы в ОФЖХ, можно изменять удерживание в очень широких пределах. Почти для всех анализируемых соединений удерживание в некоторых чистых растворителях (метанол, тетрагидрофуран) пренебрежимо мало, а в чистой воде чрезвычайно велико. Поэтому, чтобы добиться приемлемого времени удерживания,

обычно необходимо использовать смеси воды с органическим растворителем – так называемым модификатором. Зависимость фактора удерживания вещества от состава подвижной фазы описывается уравнением

где C – концентрация органического

компонента (модификатора) в

подвижной фазе, b и p – константы.

При постоянных условиях хроматографирования удерживание различных сорбатов определяется следующими факторами:

гидрофобностью сорбатов;

дипольным моментом;

объемом их молекул;

поляризуемостью;

уменьшением площади неполярной поверхности при сорбции.

При описании взаимосвязи удерживания и свойств сорбатов наиболее популярны уравнения, связывающие факторы удерживания, измеряемые в хроматографической системе, с коэффициентами распределения (чаще всего в системе октанол – вода). Для соединений близкой структуры наблюдается линейная зависимость между логарифмами коэффициентов

где Pi,j - коэффициент распределения вещества между водной и органической фазами.

Во многих случаях логарифм фактора удерживания линейно связан с

Самым распространенным дескриптором является число атомов углерода. Эти соотношения полезны как при подборе состава подвижной фазы

как при разделении, так и для идентификации компонентов смеси.

Для решения каждой конкретной задачи состав как подвижной, так и неподвижной фазы должен быть тщательно подобран с точки зрения как физических, так и химических свойств ее компонентов. Общая схема выбора варианта ВЭЖХ в зависимости от природы разделяемых веществ показана на рис. 16.

Система для проведения разделения методом ВЭЖХ состоит из нескольких блоков: насоса, дозатора, колонки, детектора и регистрирующего устройства.

Рассмотрим основные типы насосов, используемых в ВЭЖХ.

Шприцевые насосы. Вращение прецизионного синхронного двигателя преобразуется в перемещение поршня в цилиндре. При движении поршня подвижная фаза либо поступает в цилиндр, либо выдавливается из него. Преимущество данного типа насоса – практически полное отсутствие пульсаций потока подвижной фазы, недостаток – невозможность создания градиента с помощью одного насоса.

Пневмоусилительные насосы . Обеспечивают постоянное давление на входе в колонку. Преимущества – отсутствие пульсаций потока, высокая надежность; недостаток – невысокая воспроизводимость объемной подачи подвижной фазы.

Плунжерные возвратно-поступательные насосы. С помощью электромеханического устройства приводится в возвратно-поступательное движение плунжер, перемещающийся в рабочей головке, в результате чего насос либо набирает подвижную фазу, либо подает ее с заданной скоростью. Преимущество – постоянная объемная подача подвижной фазы, недостаток – довольно большие пульсации потока, которые являются основной причиной повышенного шума и снижения чувствительности детектора.

Рис. 16. Выбор условий ВЭЖХ с учетом гидрофобности разделяемых веществ

Для ввода пробы в жидкостной хроматографии используют следующие типы дозаторов:

дозирующая петля

дозаторы с мембраной (без остановки потока и с остановкой

Основные виды детекторов и их характеристики приведены в табл. 13. Наиболее распространенным детектором в адсорбционной ВЭЖХ является спектрофотометрический . В процессе элюирования веществ в специально сконструированной микрокювете измеряется оптическая плотность элюата при заранее выбранной длине волны, соответствующей максимуму поглощения определяемых веществ. Такие детекторы измеряют поглощение света в ультрафиолетовой или видимой области спектра, причем первый вариант используется чаще. Это связано с тем, что большинство химических соединений имеют достаточно интенсивные полосы поглощения в диапазоне длин волн 200-360 нм. Фотометрические детекторы имеют достаточно высокую чувствительность. Чувствительность УФ-детектора может достигать 0,001 ед. оптической плотности на шкалу при 1% шума. При такой высокой чувствительности может быть зафиксировано до нескольких нг даже слабо поглощающих УФ веществ. Широкая область линейности детектора позволяет анализировать как примеси, так и основные компоненты смеси на одной хроматограмме. Возможности спектрофотометрического детектора существенно расширились после появления его современного аналога – детектора на диодной матрице (ДДМ), работающего как в УФ-, так и видимой области. В таком детекторе «матрица» фотодиодов (их более 200) постоянно регистрирует поглощение электромагнитного излучения в режиме сканирования. Это позволяет снимать при высокой чувствительности неискаженные спектры быстро проходящих через

ячейку детектора компонентов. По сравнению с детектированием на одной длине волны, сравнение спектров, полученных в процессе элюирования пика, позволяет идентифицировать разделяемые компоненты с гораздо большей степенью достоверности.

Принцип действия флуориметрического детектора основан на измерении флуоресцентного излучения поглощенного света. Поглощение обычно проводят в УФ-области спектра, длины волн флуоресцентного излучения превышают длины волн поглощенного света. Флуориметрические детекторы обладают очень высокой чувствительностью и селективностью. Наиболее важная область их применение детектирование ароматических полициклических углеводородов.

Амперометрический детектор применяют для определения органических соединений, которые могут быть окислены на поверхности твердого электрода. Аналитическим сигналом является величина тока окисления. В детекторе имеется по крайне мере два электрода – рабочий и электрод сравнения (хлоридсеребрянный или стальной), иногда устанавливают вспомогательный электрод, необходимый для подавления влияния омического падения напряжения в растворах низкой проводимости. Успех определения определяет выбор материала и потенциала рабочего электрода. В амперометрическом детекторе используют электроды из углеродных материалов, наиболее часто стеклоуглеродный, и металлические: платиновый, золотой, медный, никелевый. Потенциал рабочего электрода устанавливают в интервале 0 - +1,3 В. Можно проводить измерения либо при постоянном потенциале, либо импульсном режиме, когда задается трехступенчатая развертка потенциала, которая обеспечивает на разных стадиях – окисление вещества, очистку электрода и его регенерацию. Использование этого

детектора особенно важно при определении фенолов, фенольных соединений, гидразинов, биогенных аминов и некоторых аминокислот.

Кондуктометрический детектор используют для определения неорганических анионов и катионов в ионной хроматографии. Принцип его работы основан на измерении электропроводности подвижной фазы в процессе элюирования вещества.

Таблица 13. Детекторы для высокоэффективной жидкостной хроматографии, используемые в анализе объектов окружающей среды

Вид детектора

Измеряемый

Минимально

Селективность

параметр

определяемое

количество, г

Спектрофото-

Оптическая

10 -10

метрический

плотность

Флуориметри-

Интенсивность

10 -11

флуоресценции

Кондуктомет-

Электропровод-

10-9

рический

Амперометри-

Величину тока

10-11 - 10-9

Масс-спектро-

Величину

10 -12 – 10 -10

метрический

ионного тока

Исключительно информативным является масс-

спектрометрический детектор, который обладает высокой чувствительностью и селективностью. Основная проблема, затрудняющая использование этого детектора, проблема ввода потока элюента в массспектрометр. Развитие микроколоночной хроматографии позволяет

разработать системы прямого ввода потока элюента в ионный источник масс-спектрометра. Используют масс-спектрометры высокого разрешения

и достаточного быстродействия с химической ионизацией при

атмосферном давлении или ионизацией с применением электрораспыления. Последние модели масс-спектрометров для жидкостной хроматографии работают в диапазоне масс m/z от 20 до

4000 а.е.м. Масс-спектрометрический детектор предъявляет жесткие требования к чистоте растворителей, является дорогостоящим и сложным

в обращении.

3.1.2. Использование обращенно-фазовой высокоэффективной жидкостной хроматографии для решения экологических задач

Определение загрязнений воды и почвы. Высокоэффективная жидкостная хроматография активно используется для определения различных экотоксикантов в водах и почвах. Наиболее значимые задачи, решаемые ВЭЖХ в анализе вод и почвы – определение фенольных соединений, ПАУ и пестицидов. Так как ПДК этих экотоксикантов в водах и почвах очень низки, их определение обычно проводят после предварительного концентрирования или выделения. Для этого можно использовать жидкостную экстракцию, но более удобным и эффективным методом является сорбция или твердофазная экстракция.

Определение фенолов в сточных и природных водах. Весьма распространенными экотоксикантами являются фенол и его хлорпроизводные и нитропроизводные, гваякол, крезолы. Эти соединения образуются в процессе производственной деятельности человека, в частности, в целлюлозно-бумажном производстве. Возникает необходимость их определения в различных типах вод: природных,

водопроводной, производственных и сточных. Состав вод весьма сложен и может включать большое число фенольных соединений, которые образуются как на стадии загрязнения, так и в процессе очистки вод. Наиболее вероятными компонентами сточных вод являются фенол, гваякол, о-, м- и п-крезолы, моно-, ди-,три- и пентахлорфенолы, моно- и динитрофенолы. Для разделения и одновременного определения летучих и малолетучих фенолов весьма удачным является использование высокоэффективной жидкостной хроматографии на гидрофобизированном силикагеле. Эффективность и селективность разделения фенолов определяется составом подвижной фазы. Наиболее часто для разделения фенолов в ВЭЖХ используют смеси ацетонитрила или метанола с буферными растворами (ацетатными или фосфатными), успешное разделение фенолов различного состава может быть достигнуто, если в качестве водного компонента подвижной фазы используется вода, подкисленная уксусной, хлоруксусной или фосфорной кислотой. Время удерживания фенолов определяется их гидрофобностью и увеличивается с ее ростом. Для наиболее значимых фенолов, загрязнителей окружающей среды, удерживание растет в ряду: катехол < фенол < 4-нитрофенол < гваякол < п-крезол < 2,4-нитрофенол < 2-нитрофенол < 2-хлорфенол < 4- хлорфенол < 3-хлорфенол < 2,4-диметилфенол < 4-хлор-3-метилфенол < 2,4-дихлорфенол < 2,4,6- трихлорфенол < пентахлорфенол и зависит от состава подвижной фазы. Чем больше в ней содержание ацетонитрила или метанола, тем меньше удерживание. Для разделения столь сложной смеси фенольных соединений не удается подобрать подвижной фазы определенного состава. Необходимо либо использование градиентного элюирования, либо разные фенолы делят с использованием различных подвижных фаз.

Низкие ПДК фенольных соединений в водах требуют чувствительных методов детектирования или предварительного

концентрирования. Достаточно успешным является детектирование фенолов с использование ДДМ, предел обнаружения фенола при длине волны 260 нм в этом случае достигает 1 мг/л. Еще большей чувствительностью и селективностью к фенолу и его производным обладает амперометрический детектор. Его использование позволяет определять фенолы на уровне ПДК даже в природных водах. В природных водах ПДК для фенола составляет 0,001 мг/л, п-хлорфенола – 0,002 мг/л, 2,4-дихлорфенола – 0,004 мг/мл, 2,4,6 – трихлорфенола – 0,006 мг/л и пентахлорфенола – 0,01 мг/л. Амперометрическое детектирование основано на окислении фенолов на поверхности твердого электрода, в качестве которого обычно используют стеклоуглеродный электрод. Установлено, что максимальный сигнал регистрируется при потенциале стеклоуглеродного электрода – +1300 мВ относительно стального или +1100 мВ относительно хлоридсеребрянного электродов сравнения. Важным является использование в качестве компонента подвижной фазы фосфорной кислоты, в этом случае минимальны флуктуации базовой линии сигнала амперометрического детектора, что позволяет уменьшить величину минимальной определяемой концентрации, которая соответствует сигналу, равному удвоенной “ширине” базовой линии. В табл. 14. приведены примеры определения фенола в водах в различных условиях, на рис. 17 показана хроматограмма смеси, а на рис. 18 – 20 определение фенолов в водопроводной и сточной воде.

Определение пестицидов . В современном сельском хозяйстве широко применяются химические соединения, используемые для борьбы с вредными организмами, грибами, сорняками, так называемые пестициды. Наряду с несомненной пользой крупномасштабное производство и бесконтрольное применение пестицидов привело к существенному обострению экологической обстановки.

Таблица. 14. Примеры определения фенольных соединений в водах ВЭЖХ

Определяемые фенолы

Неподвижная фаза

Подвижная фаза

Детектор

сmin , мг/л

Катехол, фенол, 4-нитрофенол, 2-

Spherisorb C18 ,

Метанол (МеОН) – 1%

0,03 ─0,1(прямой

нитрофенол, п -крезол, 2,4-динитрофенол,

раствор уксусной

2,4-диметилфенол, 2-хлорфенол, 4-

кислоты градиентный

(0,65 ─ 1,0) 102

хлорфенол, 2,4-дихлорфенол, 2,4,6-

(предварительное

трихлорфенол, пентахлорфенол

25 ─ 100% МеОН

концентрирование

Hypersil Green C18

Ацетонитрил (АН) - 1%

(0,3 – 8,0) 102

раствор уксусной

(предварительное

кислоты; градиентный

концентрирование

Kromasil C18 , 5

30 ─ 100% АН

(2,5 – 27) 103

МеОН – Н2 О;

(0,04 – 0,3) 103

градиентный режим:

Фенол, 2-хлорфенол, 2,4-дихдорфенол, 2,4,6-

25 ─ 100% МеОН

трихлорфенол, пентахлорфенол

АН ─ 0,1% раствор H3 PO4

Фенол, гваякол, п -крезол, о -крезол,

АН ─ 0,1% раствор H3 PO4

Пирагаллол, 4-гидроксианилин, бензкатехол,

2- гидроксианилин, фенол, крезолы, моно-,

Силикагель С18 ,

МеОН ─ 0,1 М раствор

8 10-5 – 4 10-4

ди-, трихлорфенолы, моно-, динитрофенолы,

Na2 HPO4 ─ 50 нM

ячейками

пентахлорфенол

нитрилтрехуксусная

кислота ─ 0,03 M раствор

додецилсульфата натрия;

градиентный режим

Рис. 17. Хроматограмма смеси: 2 – фенол; 3 – гваякол; 4 – п -крезол; 5 – о -крезол; 6 – хлоркрезол; 7 – п -хлорфенол; 1 – системный пик.Колонка: (150х4,6) мм, Mightysil RP-18; Подвижная фаза:

ацетонитрил:вода:фосфорная кислота (20,0:79,9:0,1)%об

Рис. 18. Хроматограмма образца сточной воды целлюлозо-бумажного комбината: 1 – системный пик; 2 – 2,4,6-трихлорфенол; 5 – пентахлорфенол; 3,4,6 – неидентифицированные пики.

Колонка (150х4,6) мм Mightysil RP-18; Подвижная фаза:

ацетонитрил:вода:фосфорная кислота (70,0:29,9:0,1) %об. Скорость подачи подвижной фазы 0,7 мл/мин. Детектор амперометрический. Потенциал рабочего электрода 1300 мВ

Рис. 19. Хроматограмма водопроводной воды с добавкой фенолов (1 мкг/л) с предварительной ион-парной экстракцией: 1 – фенол; 2 – 4- нитрофенол; 3 – 2,4-динитрофенол; 4 – 2-хлорфенол; 5 – 2-нитрофенол; 6

– 2,6-диметилфенол; 7 – 2,4-диметилфенол; 8 – 2-метил-4,6- динитрофенол; 9 – 4-хлор-3-метилфенол; 10 – 2,4-дихлорфенол; 11- 2,4,6- триметилфенол; 12 – 2,4,6-трихлорфенол; 13 – пентахлорфенол. Колонка: стальная (250х4,6 мм), Spherisorb ODS-2, 5мкм; Подвижная фаза: метанол – 1% уксусная кислота, градиентный режим (метанол 25-100%); детектор спектрофотометрический, 280 нм (пентахлорфенол 302 нм)

Рис. 20. Хроматограмма образца водопроводной воды с добавками фенолов: 1 – фенол (0,1 мкг/л); 2 – 2-хлорфенол (0,1 мкг/л); 3 – 2,6- дихлорфенол (0,2 мкг/л); 4 – 2,4-дихлорфенол (0,2 мкг/л).

Фенолы концентрировали из 30 мл.

Колонка (150х4,6) мм Mightysil RP-18. Подвижная фаза:

ацетонитрил:вода:фосфорная кислота (70,0:29,9:0,1) %об. Скорость подачи подвижной фазы – 0,7 мл/мин. Детектор амперометрический; потенциал рабочего электрода – 1300 мВ

Так как пестициды попадают в организм людей, не имеющих профессионального контакта с ядохимикатами, главным образом, с пищей и водой необходима постоянно действующая система анализа качества сельскохозяйственной продукции, продуктов питания и воды. При этом наибольший интерес представляют методы анализа, которые можно было бы использовать не только в научных исследованиях, но и при широкомасштабном серийном аналитическом контроле. Учитывая высокую токсичность пестицидов, для мониторинга необходимы специфические и очень чувствительные аналитические методы, позволяющие определять остатки пестицидов и их метаболитов на следовом уровне.

Хроматографические методы анализа обладают более высокой чувствительностью и позволяют различать родственные соединения и их метаболиты или продукты гидролиза. В последнее время для определения и разделения пестицидов все чаще используется ВЭЖХ. Метод наиболее удобен при анализе малолетучих или термически нестабильных пестицидов, которые не могут быть проанализированы с помощью газовой хроматографии.

Наиболее успешно ВЭЖХ используется для определения карбаматов, мочевин, гербицидов на основе феноксиуксусных кислот, триазинов и их метаболитов, бензимидозолов и некоторых других соединений.

Одними из наиболее популярных гербицидов являются триазины, большинство из которых являются производными s-триазина – шестичленного гетероцикла с симметрично расположенными атомами азота. Заместители располагаются в положении 2,4 и 6. Наиболее известными являются три триазина: пропазин, атразин и симазин, два последних включены в список приоритетных загрязнителей для стран ЕС. Максимально допустимая концентрация триазинов в питьевой воде установлена на уровне 100 нг/л. При анализе вод триазины обычно предварительно концентрируют, а затем разделяют ОФ ВЭЖХ. Неподвижной фазой служат гидрофобизированные силикагели, подвижной фазой – смеси ацетонитрила с водой или буферными растворами Детектируют триазины с помощью детектора с диодной матрицей, УФ-, амперометрического и масс-спектрометрического детекторов. Примеры определения триазинов ВЭЖХ в водах и почве приведены в табл. 15.

Таблица 15. Примеры определения пестицидов в водах и почве ВЭЖХ

Определяемые пестициды

Неподвижная фаза

Подвижная фаза

Детектор

Сmin , мг/л

Триазины: атразин, симазин, пропазин,

Ultracarb C18 ,

Ацетонитрил (АН) – 1мМ

предварительное

прометин, тетбутилазин, деэтилатразин,

фосфатный буферный

концентрирование

деизопропилатразин, гидроксиатразин

раствор, рН 7

(0,8-3,0)10-3 мг/кг

градиентный режим

15 – 70 % АН

Триазины: гидроксиатразин,

Hypersil C18

Ацетонитрил(АН) - 1мМ

амперомет

2.10-5 М

гидроксисимазин, гидроксидеэтилатразин

фосфатный буферный

рический

раствор, рН 6,5

градиентный режим

30 –100 % АН

Производные фенилмочевины:

Supelkosil C18 ,

АН– Н2 О

предварительное

Монурон, флуметирон, Диурон, сидурон,

градиентный режим

концентрирование

линурон, небурон

40 – 90 % АН

(2-4)10-3

(0,4-3)10-4

Сульфонилмочевины

Хлорсульфурон, метилсульфурон,

Ultraspher C18 ,

МеОН–Н2 О(рН 2,5),

предварительное

хлоримурон, тифенсульфурон

градиентный режим

концентрирование

Viospher C6 , 5 мкм

40 –70% МеОН

Циносульфурон, тифенсульфурон, метил-

LiСhrospher C18 ,

МеОН – 0,1% H3 PO4

0,01-0,05 мг/кг

сульфурон, сульфометурон, хлорсульфурон

Карбаматы: карбарил, профарм, метиокарб,

Supelkosil C18 ,

АН– Н2 О (55:45)

предварительное

промекарб, хлорпрофам, барбан

концентрирование

(0,3-8)10-3

7. Соли четвертичных аммониевых оснований: паракват, дикват, дифензокват,хлормекват хлорид, мепикват

8. Гербициды кислотного характера: дикамба, бентазон, беназолин, 2,4 Д, МЦПА (2-метил- 4-хлорфеноксиуксусная кислота)

9. Производные фосфоновой и аминокислот: глифосат, глуфосинат, биалофос

10. Смеси пестицидов различных классов Симазин, фенсульфотион, изопрокарб, фенобукарб, хлортилонил, этридиазол, мепронил, пронамид, мекрпром, бенсулид, изофенофос, тербутол

11. Симазин, дихлофос, тирам, 1,3-дихлопропен, фенобукарб, пропизамин, ипрофенфос, изопротиолан, хлортилонил, фенитротион, диазитион, изохатион, тиобенкарб, хлорнитрофен, азулан, ипродион, бенсулин

12. Беномил, 2,4-Д, дикамба, римсульфурон, хлорсульфурон, линурон, хлорсульфоксим, пропиконазол, дифеноконазол

(0,1–10)10-4

Силикагель С18 ,

АН с добавками NaCl,

4,4.10-4 мг/кг

MeOH – раствор

гидроксида

тетраметиламмония

LiChrosorb C18

MeOH – 0,01 M триэтил

предварительное

амин, рН 6,9

концентрирование

градиентный режим

(0,2–1,0)10-4

MeOH – 0,05 M NaH2 PO4 ,

Флуоресц.

0,2.10-4

Nova-Pak C18

AH - 0,05 M NaH2 PO4 ,

(0,3–1.0)10-4

LiChrosorb NH2

0,02 M бромид ТМА

Капиллярная

АН –Н2 О

предварительное

колонка LC

градиентный режим

концентрирование

Parkings C18 ,

(0,15–0,8)10-3

АН – 1мМ фосфатный

предварительное

буферный раствор, рН 6,

концентрирование

градиентный режим

(0,04–0,5)10-3

Diaspher C16 , 5 мкм

АН – 0,01 М фосфатный

буферный раствор, рН 4,2

Еще одной группой пестицидов, для которых использование ВЭЖХ более перспективно, чем капиллярная газовая хроматография, являются производные фенилмочевины. Наиболее известными из них являются линурон, монолинурон, пиразон, и сульфонилмочевины (хлорсульфурон, тифенсульфурон, римсульфурон, метилсульфурон и др.).

ВЭЖХ широко применяется и для разделения и определения карбаматов. Особое внимание обращают на определение карбарила, профарма, метиокарба. Условия разделения фенилмочевин, сульфонилмочевин и карбаматов близки к условиям разделения триазинов.

Круг используемых детекторов включает: детектор с диодной матрицей, УФ-, флуориметрический и масс-спектрометрический детекторы. Достаточно широко используют амперометричекий детектор. Этот детектор дает выигрыш в чувствительности по сравнению с УФ при определении производных карбамата и мочевины (алдикарба, карбарила, хлорпрофарма, диметоата, метиокарба) примерно в 10 раз. Некоторые примеры разделения сульфонилмочевин, фенилмочевин и карбаматов показаны в табл. 15 и на рис. 21.

Селективные гербициды – призводные феноксиуксусной кислоты (2,4-Д, дикамба, бентазон, трихлорпир и др), также предпочтительнее определять ВЭЖХ. Неподвижной фазой служат гидрофобные силикагели, подвижной фазой – смеси ацетонитрила или метанола с буферными растворами или водой с добавкой кислот. Выбор рН подвижной фазы особенно важен при анализе соединений кислотного характера, его значение выбирают ниже, чем рКа разделяемых соединений. Для повышения селективности разделения можно использовать также ионпарный вариант обращенно-фазовой ВЭЖХ.

Рис. 21. Хроматограмма экстракта почвы с добавкой (10мкг/г) гербицидов, производных фенилмочевины: 1 – циносульфурон; 2 – тиофенсульфурон метил; 3 – метилсульфурон метил; 4 – сульфометурон метил; 5 – хлорсульфурон.

Колонка стальная (100х4,6 мм), силикагель С18 , 3 мкм. Подвижная фаза метанол – 0,1% раствор фосфорной кислоты (45:55). Детектор спектрофотометрический, 226 нм

Триэтиламин используют в качестве ион-парного реагента для увеличения удерживания дикамбы, бентазона, беназолина, 2,4-Д и МЦПА (2-метил-4-хлорфеноксиуксусной кислоты) на октадецилсиликагеле в нейтральной области pH. Таким образом определяют гербициды кислотного характера в питьевых и подземных водах (табл. 15). Детектирование проводят УФ-детектором, наиболее низкие пределы обнаружения получены для УФ-детектора с диодной матрицей.

Важной задачей является также разделения смесей, содержащих пестициды различных классов, так как в объектах окружающей среды они

гидрофобизированных силикагелях: полярные соединения элюируются уже при небольшом содержании ацетонитрила (20-30)% в подвижной фазе, более гидрофобные при большем содержании (до 70%), поэтому для разделения смесей используют градиентный режим элюирования. Примеры разделения смесей пестицидов приведены на рис. 22, 23.

Рис. 22. Хроматограмма воды с добавкой пестицидов (0,2 мг/л) после предварительного сорбционного концентрирования: 1 – дисизопропилатразин; 2 – метамитрон; 3 – хлордиазон; 4 – дисэтилатразин; 5 – кримидин; 6 – карбетамид; 7 – бромацил; 8 – симазин; 9 – цианазин; 10 – дисэтилтербутилазин; 11 – карбутилат; 12 – метабензтиазурон; 13 – хлортолурон; 14 - атразин; 15 – монолинурон; 16 – изопротурон; 17 – метазахлор; 18 – метапротрин; 19 – димефурон; 20 – себутилазин; 21 – пропазин; 22 – тетбутилазин; 23 – линурон; 24 – хлорхурон; 25 – прометрин; 26 – хлорпрофарм; 27 – тербутрин; 28 – метолахлор; 29 – пенцицурон; 30 – бифенокс; 31 – пердиметалин.

Колонка: LiChroCART (250x4 мм), Superspher 100 RP-18, 5 мкм; подвижная фаза ацетонитрил – 1 мМ ацетат аммония (градиентный режим - ацетонитрил 25–90 %). Детектор спектрофотометрический, 220 нм

Рис. 23. Хроматограмма разделения смеси пестицидов: 1-метаболит беномила (2 мкг/мл); 2 – ацетамиприд (4 мкг/мл); 3 – ленацил (10 мкг/мл); 4

– дикамба (4мкг/мл); 5 – хлорсульфурон (5 мкг/мл); 6 - тирам(5 мкг/мл); 7 – хлорсульфоксим (8 мкг/мл); 8 – пенконазол (5 мкг/мл); 9 – линурон (5 мкг/мл); 10 – флудиоксонил (5 мкг/мл); 11-пропиконазол (5 мкг/мл); 12 – дифеноконазол (5 мкг/мл).

Условия хроматографического определения: колонка Diaspher C16 (150x4,6) мм со средним размером частиц 5мкм; подвижная фаза ацетонитри-0,01 М фосфатный буферный раствор (рН 4,2) (40:60). Скорость подвижной фазы 1 мл/мин. Детектор спектрофотометрический (230 нм)

Разделение хлорорганических пестицидов с помощью ВЭЖХ еще только изучается. Отчасти это, по-видимому, объясняется отсутствием общедоступных селективных методов обнаружения после разделения их посредством обращенно-фазовой хроматографии. Предел обнаружения хлорорганических пестицидов (типа ДДТ) и эфиров феноксикарбоновых кислот по поглощению при 254 нм составляет 1-15 и 15 мкг соответственно.

Как метод анализа остатков фосфорорганических пестицидов ВЭЖХ не получила должного распространения. Эти соединения обнаруживают по поглощению при 254 нм, по ингибированию холинэстеразы и

полярографически. Показана применимость в ВЭЖХ фосфорчувствительных детекторов для селективного обнаружения фосфорорганических соединений.

Одним из важных вопросов, определяющим чувствительность определения пестицидов является способ детектирования. Для большинства исследований характерно использование спектрофотометрического способа, но его использование ограничено рядом факторов: не все соединения хорошо поглощают, разные соединения имеют разные спектры поглощения. Поэтому очень трудно подобрать соответствующую длину волны. В объектах окружающей среды могут быть другие соединения, в присутствии которых определение пестицидов будет затруднено.

В последнее время широко исследуются возможности электрохимического детектирования (ЭХД) в жидкостной хроматографии. Пытаясь повысить чувствительность определения хлорорганических пестицидов с помощью ВЭЖХ, Долан и Зибер сконструировали усовершенствованный вариант электролитического кондуктометрического детектора Коулсона (ЭКДК). Для этого детектора характерна высокая селективность определения хлорорганических соединений, его линейный диапазон соответствует изменению величины концентрации в пределах пяти порядков, а нижний предел обнаружения линдана составляет 5-50 нг. Применимость ЭКДК в аналитической системе была продемонстрирована на примере анализа необработанных экстрактов листьев салата и речной воды, содержащих альдрин и диэльдрин в концентрациях менее 10-4 %. Использование в данном случае УФ-детектора с длиной волны 254 или 220 нм не позволяет определить альдрин и диэльдрин.

Достигаемые с помощью вольтамперометрических детекторов пределы обнаружения, относительная простота устройства и приемлемая стоимость делают этот метод вполне пригодным для анализа следовых количеств органических веществ. При использовании ЭХД, работающего в

режиме восстановления, одной из существенных проблем является восстановление растворенного в элюенте кислорода, пик которого может мешать определению анализируемого вещества. Есть различные пути удаления растворенного кислорода, однако при столь низких определяемых концентрациях пестицидов не всегда удается избавиться от его следовых количеств. В связи с этим, если имеется возможность, определение пестицидов проводится в анодной области потенциалов.

В сочетании с методом ВЭЖХ наиболее часто применяется амперометрическое детектирование, при котором потенциал рабочего электрода поддерживается постоянным и возникающий при окислении или восстановлении электроактивных молекул ток измеряется как функция времени. Амперометрический детектор позволяет определять с высокой чувствительностью широкий круг пестицидов: тирам, триазины (симазин, атразин, цианазин, пропазин и анилазин), карбаматные пестициды (барбан, байгон, беномил, хлорпрофам, ландрин, мезурол, профам, севин, аминокарб, карбендазим, десмедифам), фенилмочевинные пестициды (метобромурона и линурона). Эти соединения с помощью амперометрического детектора определяют в водах, в большинстве случаев пределы обнаружения ниже, чем со спектрофотометрическим детектором. Например, предел обнаружения для аминокарба и карбендазима меньше 1 мкг/л, десмедифама и дихлорана меньше 5 мкг/л, метамитрона 10 нг/л, хлортолурона и изопротурона 20 нг/л.

Определение полициклических ароматических углеводородов

(ПАУ). Весьма часто для определения ПАУ в водах и почвах используют жидкостную хроматографию. При необходимости одновременного определения средне и малолетучих ароматических углеводородов обычно выбирают обращенно-фазовую высокоэффективную жидкостную хроматографию.

Вследствие уникальных свойств и широкой доступности октадецилсиликагелевых (ОДС) обращенных фаз большинство исследований ПАУ выполнено на этих фазах. С уменьшением длины цепи, привитого углеводородного радикала, значения коэффициента емкости быстро снижаются, что существенно усложняет анализ многокомпонентных смесей ПАУ. Так, в идентичных условиях (состав подвижной фазы, расход элюента, температура, размеры колонки) время удерживания ПАУ на колонке с Нуклеосилом С18 примерно вдвое больше, чем на Нуклеосиле С8 . Считают, что молекулы ПАУ удерживаются на неполярной поверхности алкилсиликагеля за счет ван-дер-ваальсовых сил, причем прочность связи растет с увеличением длины боковой цепи.

Сорбенты с привитыми полярными группами также используются для разделения ПАУ. Радикалы алкил(арил)алканов, используемых для модификации поверхности сорбентов, содержат одну или несколько полярных групп (-NH2 ,-NO2 ,- OH, -CN и др.). Механизм удерживания ПАУ на сорбентах с привитыми полярными группами довольно сложен.

Учитывается взаимодействие между π – электронной системой компонентов пробы и различными структурами полярной поверхности. Незамещенные ПАУ элюируются в порядке возрастания молекулярной массы. На полярной фазе, содержащей аминогруппы, удерживание ПАУ растет с увеличением количества ароматических ядер в молекуле. В отличие от колонок с гидрофобными силикагелями, на полярных фазах присутствие алкильных групп в молекулах ПАУ незначительно влияет на порядок удерживания, что позволяет использовать указанные фазы для предварительного фракционирования при анализе сложных смесей ПАУ.

На практике чаще разделение ПАУ проводят на гидрофобных силикагелях, поскольку выше селективность разделения, лучше воспроизводимость результатов, а также наблюдается более длительный срок службы хроматографических колонок.

В варианте обращенно-фазовой хроматографии для разделения ПАУ чаще всего в качестве элюентов используют водно-спиртовые смеси (водаметанол) и водно-ацетонитрильные смеси. Относительные времена удерживания для индивидуальных ПАУ сильно отличаются, поэтому чаще используют градиентный режим элюирования.

Существует множество вариантов детектирования ПАУ: амперометрическое, флуоресцентное, ультрафиолетовое. Наиболее часто используется флуоресцентное детектирование ПАУ. ВЭЖХ в сочетании с флуоресцентным детектором является селективным и чувствительным методом определения ПАУ в природных образцах. Спектрофотометрический детектор в УФ и видимой области на диодной матрице полезен для количественного и качественного анализа ПАУ в почвенных образцах в нанограммном диапазоне, в то время как флуоресцентный детектор рекомендован для анализа ПАУ в водных образцах в пикограммной области.

Наивысшая чувствительность флуоресцентного детектора может быть получена только при оптимальных длинах волн возбуждения и флуоресценции индивидуальных ПАУ. Это возможно только при программировании этих длин волн во времени. После оптимизации всех индивидуальных параметров минимальный предел детектирования отдельных ПАУ в питьевой воде достигает уровня 0,5 пикограмм.

Широко распространенные методики ЕРА рекомендуют определять нафталин, аценафтилен, аценафтен и флуорен при помощи ультрафиолетового детектора и использовать флуоресцентный детектор для определения всех остальных ПАУ. На рис. 24 показано разделение смеси 16 приоритетных ПАУ.

Рис. 24. Хроматограмма стандартной смеси EPA полициклических ароматических углеводородов: 1 – нафталин; 2 – аценафтен; 3 – флуорен; 4 – фенантрен; 5 - антрацен; 6 – флуорантен; 7 – пирен; 8 – 3,4-дибенз- антрацен; 9 – хризен; 10 – 3,4-бензфлуорантен; 11 – 11,12-бензфлуорантет; 12 – 3,4-бензпирен; 13 – 1,2,5,6-дибензантраце и 1,12-бензперилен; 14 – 2,3-о -фениленпирен.

Колонка (150х4,6мм) Mightysil RP-18; подвижная фаза: (75:25)

ацетонитрил-вода: детектор ─ флуоресцентный, режим програмирования по длинам волн флуоресценции

Определение ПАУ в объектах окружающей среды, особенно в водах

и почвах, является важной проблемой практической аналитической химии.

В литературе много работ, посвященных определению ПАУ методом ВЭЖХ в водах и почвах. Данные этих работ обобщены соответственно в табл. 16 и 17.

Трудности при проведении определения ПАУ ВЭЖХ связаны с необходимостью предварительной очистки экстрактов и принципиальными сложностями идентификации родственных по

химической

структуре

изомерных

соединений.

Таблица 16. Определение ПАУ методом ВЭЖХ в водах

Определяемые ПАУ

Неподвижная фаза

Подвижная фаза

Детектор

Cmin , нг/л

Питьевая

Фл, Б(b)Ф, Б(k)Ф, Б(a)П,

Ацетонитрил: вода

Б(g,h,i)П, Инд(1,2,3-cd)П

(250х4,6) мм, 5мкм

Градиентный режим

Загрязненная

Ацетонитрил: вода

(100х8) мм, 5 мкм

Градиентный режим

Lichrospher РАН С-18

Ацетонитрил: вода

(125× 2) мм, 4 мкм

Градиентный режим

Поверхностные

Метанол: вода (85: 15) с

(250х4,6) мм, 5мкм

Spherisorb S5 РАН

Ацетонитрил: вода(80:20)

(150× 4,6) мм, 5 мкм

изократи-ческий режим

Фл, Б(b)Ф, Б(k)Ф, Б(a)П,

Метанол: вода (85: 15)

Б(g,h,i)П, Инд(1,2,3-cd)П

(165× 4,6) мм, 5 мкм

изократи-ческий режим

Поверхностные

Ацетонитрил: вода

(250х4,6) мм, 5мкм

Градиентный режим

Фл, П, Б(a)П

Ацетонитрил: вода

(150× 4) мм, 5 мкм)

Градиентный режим

Природная

Lichrospher 100 RP-18

Ацетонитрил: вода (80:20)

0,5 нг/л (Б(а)П)

(125× 4) мм,5 мкм

изократи-ческий режим

Фл, Б(b)Ф, Б(k)Ф, Б(a)П,

SpherisorbODS – 2

Ацетонитрил: вода (80:20)

~ 8 пг (Б(а)П)

Б(g,h,i)П, Инд(1,2,3-cd)П

(300× 4) мм,5 мкм

изократи-ческий режим

Городские

Hypersil Green PAH

Ацетонитрил: вода

(100× 4,6) мм, 5 мкм)

Градиентный режим

Примечания:Фл – флуоресцентный детектор; Амп – амперометрический детектор;

TCAA – трихлоруксусная кислота; i-PrOH – изопропанол; 16 ПАУ – 16 ПАУ из стандартной смеси ЕРА

Фл – флуорантен; П – пирен; Б(b)Ф – бенз(b)флуорантен; Б(k)Ф – бенз(k)флуорантен; Б(g,h,i) – бенз(g,h,i)перилен;

Инд(1,2,3-cd)П – индено(1,2,3-cd)пирен;

ПО – предел обнаружения

Таблица 17. Определение ПАУ методом ВЭЖХ в почвах

Тип почвы

Определяемые

Неподвижная

Подвижная

С min,

Осадочные

С18 ((250× 4,6)

Ацетонитрил:

отложения

Градиентный

Почвенные

С18 ((250× 4,6)

Ацетонитрил:

Б(k)Ф, Б(a)П,

Градиентный

Сильноза-

Ацетонитрил:

грязненные

вода (80:20)

ODS ((243× 4)

Изократичес-

кий режим

С18 ((250× 4,6)

Ацетонитрил:

грязненные

Градиентный

Осадочные

С18 ((250× 4,6)

Ацетонитрил:

отложения

Градиентный

При анализе образцов речных вод, поскольку они могут содержать примеси флуоресцирующих соединений, при относительных временах удерживания ПАУ предложено использование предварительного разделения фракций ПАУ методом тонкослойной хроматографии (ТСХ) и последующий анализ отдельных фракций ПАУ методом обращеннофазовой ВЭЖХ с флуоресцентным детектором.

В почвах и сложных природных смесях ПАУ для определения специфических изомеров ПАУ бывает необходимо использовать нормально-фазовый метод ВЭЖХ. Этот метод обеспечивает отделение и концентрирование изомеров, которые сложно определить в общей

фракции ПАУ из-за низких концентраций или из-за относительно низкой чувствительности и селективности флуоресцентного детектирования. Описан метод разделения природного экстракта морских отложений на аминопропилсиликагеле. Эта предварительная стадия обеспечивает получение фракций, содержащих только изомерные ПАУ и алкилзамещенные изомеры. Фракции изомерных ПАУ анализируют методом обращенно-фазовой ВЭЖХ с флуоресцентным детектором.

Таким образом, ВЭЖХ с использованием флуоресцентного и ультрафиолетового детекторов позволяет определять ПАУ в различных объектах. Успех анализа определяется, как условиями разделения и детектирования, так и грамотной подготовкой пробы к анализу.

Определение загрязнений воздуха. Для определения загрязнений в водухе ВЭЖХ используется реже, чем в воде и почве. Этот метод незаменим при определении в воздухе токсичных высокомолекулярных и высококипящих органических соединений: к ним относятся диоксины, пестициды, полихлобифенилы, ПАУ, фенолы, ароматические амины и имины, азарены (азотсодержащие гетероциклические углеводороды) и их метильные производные. Во всех случаях предварительно загрязняющие компоненты улавливают из воздуха в специальных концентрирующих трубках, и после экстракции из фазы адсорбента анализируют полученный раствор ВЭЖХ.

Наиболее важным является определение в воздухе ПАУ (ПДК для атмосферного воздуха составляет 10-6 мг/м3 , воздуха рабочей зоны – 1,5.10-4 мг/м3 ) , анализ концентрата проводят аналогично тому, как описано для вод и почвы. Много внимания уделяют также определению фенолов и крезолов. Эта задача важна для жилых помещений, так как строительные материалы, покрытия, мебель могут выделять фенолы. Их улавливают при прокачивании воздуха через щелочные растворы или на специальных