Кодирование сигнала в латеральном коленчатом теле и первичной зрительной коре. Роль полушарий головного мозга в восприятии зрительной информации Смотреть что такое "Латеральное коленчатое тело" в других словарях

Коленчатое тело (corpus geniculatum)

Коле́нчатое те́ло латера́льное (с. g. laterale, BNA, JNA) - К. т., лежащее на нижней поверхности таламуса латерально ручки верхнего холмика четверохолмия; место расположения подкоркового центра зрения.

Коле́нчатое те́ло медиа́льное (с. g. mediale, PNA, BNA, JNA) - К. т., расположенное кпереди и латеральнее ручки нижнего холмика четверохолмия; место расположения подкоркового центра слуха.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Коленчатое тело" в других словарях:

    - (corpus geniculatlim) общее название валикоподобных образований промежуточного мозга, составляющих метаталамус … Большой медицинский словарь

    - (с. g. laterale, PNA, BNA, JNA) К. т., лежащее на нижней поверхности таламуса латерально от ручки верхнего холмика четверохолмия: место расположения подкоркового центра зрения … Большой медицинский словарь

    - (с. g. mediale, PNA, BNA, JNA) К. т., расположенное кпереди и латеральнее ручки нижнего холмика четверохолмия; место расположения подкоркового центра слуха … Большой медицинский словарь

    В данной статье имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия

    Латеральное коленчатое тело - два клеточных ядра таламуса, расположенные на концах каждого из оптических трактов. К левому телу подходят пути от левой стороны левой и правой сетчатки, к правому соответственно правой стороны сетчатки. Отсюда зрительные пути направляются к… … Энциклопедический словарь по психологии и педагогике

    Латеральное коленчатое тело (ЛКТ) - Основной сенсорный центр зрения, расположенный в таламусе участке мозга, играющем по отношению к входящей сенсорной информации роль главного коммутационного устройства. Аксоны, исходящие из ЛКТ, входят в зрительную зону затылочной доли коры … Психология ощущений: глоссарий

    ГОЛОВНОЙ МОЗГ - ГОЛОВНОЙ МОЗГ. Содержание: Методы изучения головного мозга..... . . 485 Филогенетическое и онтогенетическое развитие головного мозга............. 489 Bee головного мозга..............502 Анатомия головного мозга Макроскопическое и… … Большая медицинская энциклопедия

Это подкорковый центр, который обеспечивает передачу информации уже в зрительную кору.

У человека эта структура имеет шесть слоёв клеток, как и в зрительной коре. Волокна от сетчатки поступают перекрещенные и неперекрещенные в chiasma opticus. 1-й, 4-й, 6-й слои получают перекрещенные волокна. 2-й, 3-й, 5-й слои получают неперекрещенные.

Вся информация, поступающая к наружному коленчатому телу от сетчатки, упорядочена и сохраняется ретинотопическая проекция. Поскольку волокна входят в наружное коленчатое тело по типу гребёнки, в НКТ нет таких нейронов, которые получают информацию от двух сетчаток одновременно. Из этого следует, что в нейронах НКТ отсутствует бинокулярное взаимодействие. К НКТ поступают волокна от M-клеток и P-клеток. M-путь, сообщающий информацию от крупных клеток, передаёт информацию о движениях объектов и оканчивается в 1-м и 2-м слоях. P-путь связан с цветовой информацией и волокна оканчиваются в 3-м, 4-м, 5-м, 6-м слоях. В 1-м и 2-м слоях НКТ рецептивные поля высокочувствительны к движению и не различают спектральные характеристики (цвет). Такие рецептивные поля в небольшом количестве присутствуют и в других слоях НКТ. В 3-м и 4-м слоях преобладают нейроны с OFF-центром. Это сине-жёлтая или сине-красная + зелёная. В 5-м и 6-м слоях представлены нейроны с ON-центрами в основном красно-зелёные. Рецептивные поля клеток наружного коленчатого тела обладают такими же рецептивными полями, как и ганглиозные клетки.

Отличие этих рецептивных полей от ганглиозных клеток:

1. В размерах рецептивных полей. Клетки наружного коленчатого тела имеют меньшие размеры.

2. У некоторых нейронов НКТ появляется дополнительная тормозная зона, окружающая периферию.

Для клеток с ON-центром такая дополнительная зона будет иметь знак реакции, совпадающий с центром. Эти зоны только у некоторых нейронов, образуются за счёт усиления латерального торможения между нейронами НКТ. Эти слои – основа выживания конкретного вида. У человека – шесть слоёв, у хищников – четыре.

Детекторная теория появилась в конце 1950-х гг. В сетчатке лягушки (в ганглиозных клетках) были обнаружены реакции, которые непосредственно были связаны с поведенческими реакциями. Возбуждение определённых ганглиозных клеток сетчатки приводило к поведенческим реакциям. Этот факт позволил создать концепцию, согласно которой изображение, представленное на сетчатке, обрабатывается специфически настроенными на элементы изображения ганглиозными клетками. Такие ганглиозные клетки имеют специфическое ветвление дендритов, которое соответствует определённой структуре рецептивного поля. Были обнаружены несколько типов таких ганглиозных клеток. В дальнейшем нейроны, обладающие таким свойством, стали называть детекторными. Таким образом, детектор – это нейрон, реагирующий на определённое изображение или его часть. Оказалось, что и у других, более высокоразвитых животных есть возможность выделять специфический символ.

1. Детекторы выпуклого края – клетка активировалась при появлении крупного объекта в поле зрения;

2. Детектор движущегося мелкого контраста – его возбуждение приводило к попытке захвата это объекта; по контрасту соответствует захватываемым объектам; эти реакции связаны с пищевыми реакциями;

3. Детектор затемнения – вызывает оборонительную реакцию (появление крупных врагов).

Эти ганглиозные клетки сетчатки настроены выделять определённые элементы окружающей среды.

Группа исследователей, работавших над этой темой: Летвин, Матурано, Моккало, Питц.

Детекторными свойствами обладают и нейроны других сенсорных систем. Большинство детекторов зрительной системы связано с выделением движения. У нейронов усиливаются реакции при увеличении скорости движения объектов. Детекторы были обнаружены и у птиц, и у млекопитающих. Детекторы других животных непосредственно связаны с окружающим пространством. У птиц были обнаружены детекторы горизонтальной поверхности, что связано с необходимостью приземления на горизонтальные объекты. Также были обнаружены детекторы вертикальных поверхностей, которые обеспечивают собственные движения птиц в сторону этих объектов. Оказалось, что чем выше животное в эволюционной иерархии, тем выше находятся детекторы, т.е. эти нейроны уже могут находиться не только в сетчатке, но и в высших отделах зрительной системы. У высших млекопитающих: у обезьян и человека – детекторы находятся в зрительной коре. Это важно, поскольку специфический способ, который обеспечивает реакции на элементы внешней среды, переносится на вышележащие уровни мозга, и при этом каждому виду животных присущи собственные специфические виды детекторов. В дальнейшем оказалось, что в онтогенезе детекторные свойства сенсорных систем формируются под влиянием окружающей среды. Для демонстрации этого свойства были проделаны эксперименты исследователями, Нобелевскими лауреатами, Хьюбелом и Визелом. Были проделаны эксперименты, доказавшие, что формирование детекторных свойств происходит в самом раннем онтогенезе. Например, использовали три группы котят: одна контрольная и две экспериментальные. Первая экспериментальная была помещена в условия, где в основном присутствовали горизонтально ориентированные линии. Вторая экспериментальная была помещена в условия, где в основном были горизонтальные линии. Исследователи проверяли, какие нейроны сформировались в коре у котят каждой группы. В коре у этих животных оказалось по 50% нейронов, которые активировались и горизонтальными, + 50% вертикальными. Животные, воспитанные в горизонтальной среде, имели в коре значительное количество нейронов, которые активировались горизонтальными объектами, практически не было нейронов, активировавшихся при восприятии вертикальных объектов. Во второй экспериментальной группе была аналогичная ситуация с горизонтальными объектами. У котят обеих горизонтальных групп появились определённые дефекты. Котята горизонтальной среды могли прекрасно прыгать по ступеньками и горизонтальными поверхностям, но плохо проводили движения относительно вертикальных объектов (ножка стола). У котят второй экспериментальной группы была соответствующая ситуация для вертикальных объектов. Данный эксперимент доказал:

1) формирование нейронов в раннем онтогенезе;

2) животное не может адекватно взаимодействовать.

Изменение поведения животных в изменяющейся среде. Каждое поколение имеет свой набор внешних стимулов, которые вырабатывают новый набор нейронов.

Специфические особенности зрительной коры

От клеток наружного коленчатого тела (имеет 6-слойную структуру) аксоны поступают к 4 слоям зрительной коры. Основная масса аксонов наружного коленчатого тела (НКТ) распределяется в четвёртом слое и его подслоях. От четвёртого слоя информация поступает к другим слоям коры. Зрительная кора сохраняет принцип ретинотопической проекции так же, как и НКТ. Вся информация от сетчатки поступает к нейронам зрительной коры. Нейроны зрительной коры, как и нейроны нижележащих уровней, имеют рецептивные поля. Структура рецептивных полей нейронов зрительной коры отличается от рецептивных полей НКТ и клеток сетчатки. Хьюбел и Визел также занимались изучением зрительной коры. Их работа позволила создать классификацию рецептивных полей нейронов зрительной коры (РПНЗрК). Х. и В. Обнаружили, что РПНЗрК имеют не концентрическую, а прямоугольную форму. Они могут быть ориентированы под разными углами, иметь 2 или 3 антагонистических зоны.

Такое рецептивное поле может выделять:

1. изменение освещённости, контраст - такие поля были названы простыми рецептивными полями ;

2. нейроны со сложными рецептивными полями – могут выделять те же самые объекты, что и простые нейроны, но при этом эти объекты могут находиться в любом месте сетчатки;

3. сверхсложные поля - могут выделять объекты, имеющие разрывы, границы или изменение формы объекта, т.е. сверхсложные рецептивные поля могут выделять геометрические формы.

Гештальты – нейроны, выделяющие подобразы.

Клетки зрительной коры могут только формировать некие элементы изображения. Откуда появляется константность, где появляется зрительный образ? Ответ был найден в ассоциативных нейронах, которые также связаны со зрением.

Зрительная система может выделять различные цветовые характеристики. Сочетание оппонентных цветов позволяет выделять различные оттенки. Обязательно участвует латеральное торможение.

Рецептивные поля имеют антогонистические зоны. Нейроны зрительной коры способны возбуждаться периферически на зелёный в то время, как середина возбуждается на действие красного источника. Действие зелёного будет вызывать тормозную реакцию, действие красного будет вызывать возбуждающую реакцию.

Зрительная система воспринимает не только чистые спектральные цвета, но и любые сочетания оттенков. Многие области коры больших полушарий имеют не только горизонтальное, но и вертикальное строение. Это было обнаружено в середине 1970-х гг. Это было показано для соматосенсорной системы. Вертикальная или колончатая организация. Оказалось, что зрительная кора имеет кроме слоёв ещё и вертикально ориентированные колонки. Совершенствование техники регистрации привело к проведению более тонких экспериментов. Нейроны зрительной коры кроме слоёв имеют ещё и горизонтальную организацию. Был проведён микроэлектрод строго перпендикулярно поверхности коры. Все основные зрительные поля в медиальной части затылочной коры. Поскольку рецептивные поля имеют прямоугольную организацию, точки, пятна, любые концентрически объекта не вызывают никакой реакции в коре.

Колонка – вид реакции, соседняя колонка тоже выделяет наклон линии, но от предыдущей он отличается на 7-10 градусов. Дальнейшие исследования показали, что рядом располагаются колонки, у которых угол изменяется с равным шагом. Около 20-22 соседних колонок будут выделять все наклоны от 0 до 180 градусов. Совокупность колонок, способных выделить все градации этого признака, назвали макроколонкой. Это были первые исследования, которые показали, что зрительная кора может выделять не только единичное свойство, но и комплекс – все возможные изменения признака. В дальнейших исследованиях было показано, что рядом с макроколонками, фиксирующими угол, располагаются макроколонки, способные выделять и другие свойства изображения: цвета, направление движения, скорость движения, а также макроколонки, связанные с правой или левой сетчаткой (колонки глазодоминантности). Таким образом, все макроколонки компактно располагаются на поверхности коры. Было предложено совокупности макроколонок называть гиперколонками. Гиперколонки могут анализировать набор признаков изображений, находящихся в локальном участке сетчатки. Гиперколонки – модуль, который выделяет набор признаков в локальном участке сетчатки (1 и 2 идентичные понятия).

Таким образом, зрительная кора состоит из набора модулей, которые анализируют свойства изображений и создают подобразы. Зрительная кора – не конечный этап переработки зрительной информации.

Свойства бинокулярного зрения (стереозрения)

Эти свойства облегчают и животному, и человеку восприятие удалённости объектов и глубины пространства. Для того, чтобы эта способность проявлялась, обязательны движения глаз (конвергентно-дивергентные) на центральную ямку сетчатки. При рассмотрении удалённого объекта происходит разведение (дивергенция) оптических осей и сведение для близко расположенных (конвергенция). Такая система бинокулярного зрения представлена у разных видов животных. Наиболее совершенна эта система у тех животных, у которых глаза располагаются на фронтальной поверхности головы: у многих хищных животных, птиц, приматов, большинство хищных обезьян.

У другой части животных глаза располагаются латерально (копытные, млекопитающие и т.д.). Для них очень важно иметь большой объём восприятия пространства.

Это связано со средой обитания и их местом в пищевой цепочке (хищник - жертва).

При таком способе восприятия пороги восприятия снижаются на 10-15%, т.е. у организмов, обладающих этим свойством, появляется преимущество в точности собственного движений и соотнесении их с движениями цели.

Также существуют монокулярные признаки глубины пространства.

Свойства бинокулярного восприятия:

1. Фузия – слияние полностью идентичных изображений двух сетчаток. При этом объект воспринимается двухмерным, плоскостным.

2. Слияние двух неидентичных изображений сетчаток. При этом объект воспринимается объемно, трехмерно.

3. Соперничество полей зрения. От правой и левой сетчатки поступают два разных изображения. Мозг не может совместить два разных изображения, и поэтому они воспринимаются поочередно.

Остальные точки сетчатки – диспаратные. Степень диспаратности и будет определять, воспринимается ли объект трёхмерно или он будет восприниматься при соперничестве полей зрения. Если диспаратность невелика, то изображение воспринимается трёхмерно. Если диспаратность очень высокая, то объект не воспринимается.

Такие нейроны обнаружены не в 17-м, а в 18-м и 19-м полях.

Чем отличаются рецептивные поля таких клеток: для таких нейронов в зрительной коре рецептивные поля либо простые, либо сложные. В этих нейронах наблюдается различие рецептивных полей от правой и левой сетчатки. Диспаратность рецептивных полей таких нейронов может быть либо вертикальной, либо горизонтальной (см. след. страницу):


Это свойство позволяет лучше адаптироваться.

(+) Зрительная кора не позволяет говорить о том, что в ней формируется зрительный образ, то константность отсутствует во всех областях зрительной коры.


Похожая информация.


Наружное коленчатое тело

Аксоны зрительного тракта подходят к одному из четырех воспринимающих и интегрирующих центров второго порядка. Ядра латерального коленчатого тела и верхних бугорков четверохолмия -- это структуры-мишени, наиболее важные для осуществления зрительной функции. Коленчатые тела образуют «коленоподобный» изгиб, и одно из них -- латеральное (т.е. лежащее дальше от срединной плоскости мозга) -- связано со зрением. Бугорки четверохолмия -- это два парных возвышения на поверхности таламуса, из которых верхние имеют дело со зрением. Третья структура -- супрахиазменные ядра гипоталамуса (они расположены над зрительным перекрестом) -- используют информацию об интенсивности света для координации наших внутренних ритмов. И наконец, глазодвигательные ядра координируют движения глаз, когда мы смотрим на движущиеся предметы.

Латеральное коленчатое ядро. Аксоны ганглиозных клеток образуют синапсы с клетками латерального коленчатого тела таким образом, что там восстанавливается отображение соответствующей половины поля зрения. Эти клетки в свою очередь посылают аксоны к клеткам первичной зрительной коры -- зоны в затылочной доле коры.

Верхние бугорки четверохолмия. Многие аксоны ганглиозных клеток ветвятся, прежде чем достичь латерального коленчатого ядра. В то время как одна ветвь соединяет сетчатку с этим ядром, другая идет к одному из нейронов вторичного уровня в верхнем бугорке четверохолмия. В результате такого ветвления создаются два параллельных пути от ганглиозных клеток сетчатки к двум различным центрам таламуса. При этом обе ветви сохраняют свою ретинотопическую специфику, т. е. приходят в пункты, в совокупности образующие упорядоченную проекцию сетчатки. Нейроны верхнего бугорка, получающие сигналы от сетчатки, посылают свои аксоны к крупному ядру в таламусе, называемому подушкой. Это ядро становится все крупнее в ряду млекопитающих по мере усложнения их мозга и достигает наибольшего развития у человека. Крупные размеры этого образования позволяют думать, что оно выполняет у человека какие-то особые функции, однако истинная его роль пока остается неясной. Наряду с первичными зрительными сигналами нейроны верхних бугорков получают информацию о звуках, исходящих от определенных источников, и о положении головы, а также переработанную зрительную информацию, возвращающуюся по петле обратной связи от нейронов первичной зрительной коры. На этом основании полагают, что бугорки служат первичными центрами интегрирования информации, используемой нами для пространственной ориентации в меняющемся мире.

Зрительная кора

Кора имеет слоистую структуру. Слои отличаются друг от друга строением и формой образующих их нейронов, а также характером связи между ними. По своей форме нейроны зрительной коры делятся на большие и малые, звездчатые, кустовидные, веретенообразные .

Известный нейропсихолог Лоренте де Но в 40-х гг. двадцатого столетия обнаружил, что зрительная кора делится на вертикальные элементарные единицы, представляющие собой цепь нейронов, расположенных во всех слоях коры .

Синаптические связи в зрительной коре весьма многообразны. Кроме обычного деления на аксосоматические и аксодендрические, концевые и коллатеральные, их можно подразделить на два типа: 1) синапсы с большой протяженностью и множественными синаптическими окончаниями и 2) синапсы с малой протяженностью и одиночными контактами .

Функциональное значение зрительной коры чрезвычайно велико. Это доказывается наличием многочисленных связей не только со специфическими и неспецифическими ядрами таламуса, ретикулярной формацией, темной ассоциативной областью и т.д.

На основании электрофизиологических и нейропсихологических данных можно утверждать, что на уровне зрительной коры осуществляется тонкий, дифференцированный анализ наиболее сложных признаков зрительного сигнала (выделение контуров, очертаний, формы объекта и т.д.). На уровне вторичной и третичной областей, по-видимому, происходит наиболее сложный интегративный процесс, подготавливающий организм к опознанию зрительных образов и формированию сенсорноперцептивной картины мира.

мозг сетчатка затылочный зрительный

Наружное коленчатое тело (corpus genicu-latum laterale) является местом расположения так называемого «второго нейрона» зрительно­го пути. Через наружное коленчатое тело про­ходит около 70% волокон зрительного тракта . Наружное коленчатое тело представляет собой возвышенность, соответствующую месту расположения одного из ядер зрительного буг­ра (рис. 4.2.26-4.2.28). Содержит оно около 1 800 000 нейронов, на дендритах которых за­канчиваются аксоны ганглиозных клеток сет­чатой оболочки.

Ранее предполагали, что наружное коленча­тое тело представляет собой лишь «ретрансля­ционную станцию», передающую информацию от нейронов сетчатки через зрительную лучис­тость коре головного мозга. В настоящее время показано, что на уровне наружного коленчато­го тела происходит довольно существенная и разноплановая обработка зрительной инфор­мации . О нейрофизиоло­гическом значении этого образования речь пой­дет несколько ниже. Первоначально необхо-


Рис. 4.2.26. Модель левого наружного коленчатого тела (по Wolff, 1951):

а - вид сзади и изнутри; б - вид сзади и снаружи (/ - зри­тельный тракт; 2 - седло; 3 - зрительная лучистость; 4 - го­ловка; 5 - тело; 6 - перешеек)

димо остановиться на его анатомических осо­бенностях.

Ядро наружного коленчатого тела представ­ляет собой одно из ядер зрительного бугра. Располагается оно между вентропостериолате-ральным ядром зрительного бугра и подушкой зрительного бугра (рис. 4.2.27).

Наружное коленчатое ядро состоит из дор-зального и филогенетически более древнего вентрального ядер. Вентральное ядро у челове­ка сохранено в виде рудимента и состоит из группы нейронов, расположенных ростральней дорзального ядра . У низших млекопитаю­щих это ядро обеспечивает наиболее прими­тивные фотостатические реакции. Волокна зри­тельного тракта к этому ядру не подходят.

Дорзальное ядро составляет основную часть ядра наружного коленчатого тела. Представ­ляет оно собой многослойную структуру в виде седла или асимметричного конуса с округлен­ной верхушкой (рис. 4.2.25-4.2.28). На гори­зонтальном срезе видно, что наружное коленча­тое тело связано спереди со зрительным трак­том, с латеральной стороны - с ретролентику-лярной частью внутренней капсулы, медиаль­но - со средним коленчатым телом, сзади с гиппокампальной извилиной, а постериолате-рально - с нижним рогом бокового желудоч­ка. К ядру наружного коленчатого тела сверху прилежит подушка зрительного бугра, антерио-латерально - темпоропонтинные волокна и зад­няя часть внутренней капсулы, латерально - зона Вернике, а с внутренней стороны - меди­альное ядро (рис. 4.2.27). Зона Вернике являет­ся самой внутренней частью внутренней капсу­лы. Именно в ней и начинается зрительная лу­чистость. Волокна зрительной лучистости рас­полагаются с дорзолатеральной стороны ядра наружного коленчатого тела, в то время как волокна слухового тракта - с дорзомедиальной.

Волокна зрительного нерва начинаются от каждого глаза и заканчиваются на клетках правого и левого латерального коленчатого тела (ЛКТ) (рис. 1), имеющего четко различимую слоистую структуру («коленчатый» -- geniculate -- означает «изогнутый подобно колену»). В ЛКТ кошки можно увидеть три явных, хорошо различимых слоя клеток (А, А 1 , С), один из которых (А 1) имеет сложное строение и подразделяется далее. У обезьян и других приматов, включая

Рис. 1. Латеральное коленчатое тело (ЛКТ). (А) У кошки в ЛКТ имеется три слоя клеток: А, А, и С. (В) ЛКТ обезьяны имеет 6 основных слоев, включающих мелкоклеточные (рагvocellular), или С (3, 4, 5, 6), крупноклеточные (magnocellular), или M (1, 2), разделенные кониоклеточными (koniocellular) слоями (К). У обоих животных каждый слой получает сигналы только от одного глаза и содержит клетки, имеющие специализированные физиологические свойства.

человека, ЛКТ имеет шесть слоев клеток. Клетки в более глубоких слоях 1 и 2 больше по размерам, чем в слоях 3, 4, 5 и 6, из-за чего эти слои и называют соответственно крупноклеточными (M, magnocellular) и мелкоклеточными (Р, parvocellular). Классификация коррелирует также с большими (М) и маленькими (Р) ганглиозными клетками сетчатки, которые посылают свои отростки в ЛКТ. Между каждым M и Р слоями лежит зона очень маленьких клеток: интраламинарный, или кониоклеточный (К, koniocellular) слой. Клетки К слоя отличаются от M и Р клеток по своим функциональным и нейрохимическим свойствам, образуя третий канал информации в зрительную кору.

Как у кошки, так и у обезьяны каждый слой ЛКТ получает сигналы либо от одного, либо от другого глаза. У обезьян слои 6, 4 и 1 получают информацию от контралатерального глаза, а слои 5, 3 и 2 -- от ипсилатерального. Разделение хода нервных окончаний от каждого глаза в различные слои было показано при помощи электрофизиологических и целого ряда анатомических методов. Особенно удивительным является тип ветвления отдельного волокна зрительного нерва при инъекции в него фермента пероксидазы хрена (рис. 2).

Образование терминалей ограничено слоями ЛКТ для этого глаза, без выхода за границы этих слоев. Из-за систематического и определенным образом проводимого разделения волокон зрительного нерва в районе хиазмы, все рецептивные поля клеток ЛКТ расположены в зрительном поле противоположной стороны.

Рис. 2. Окончания волокон зрительного нерва в ЛКТ кошки. В один из аксонов от зоны с "on" центром контралатерального глаза была введена пероксидаза хрена. Веточки аксона заканчиваются на клетках слоев А и С, но не А1.

Рис. 3. Рецептивные поля клеток ШТ. Концентрические рецептивные поля клеток ЛКТ напоминают поля ганглиозных клеток в сетчатке, разделяясь на поля с "on"- и "off""-центром. Показаны ответы клетки с "on"-центром ЛКТ кошки. Полоской над сигналом показана продолжительность освещения. Центральные и периферические зоны нивелируют эффекты друг друга, поэтому диффузное освещение всего рецептивного поля дает только слабые ответы (нижняя запись), еще менее выраженные, чем в ганглиозных клетках сетчатки.