Как называется процесс созревания и рнк. Созревание (процессинг РНК)

Созревание мРНК называется процессингом. Биологиче­ское значение процессинга в эукариотической клетке заключа­ется в возможности получения различных комбинаций экзонов гена, а значит, получения большего разнообразия белков, ко­дируемых одной нуклеотидной последовательностью ДНК.

Кроме того модификация 3’- и 5’-концов мРНК служит для регу­ляции ее экспорта из ядра, поддержания стабильности в цито­плазме и для улучшения взаимодействия с рибосомами.

Еще до завершения транскрипции происходит полиадени- лирование З’-конца (разд. 6.3). К 5"-концу мРНК посредством трифосфатного моста присоединяется 7-метилгуанозин, соеди­няющийся в необычной позиции 5"^5", и происходит метилиро­вание рибоз двух первых нуклеотидов. Этот процесс называется кэпированием.

Процесс вырезания определенных нуклеотидных последо­вательностей из молекул РНК и соединения последовательно­стей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК, называется сплайсингом. В ходе сплайсинга из мРНК уча­стки, не кодирующие белок (интроны), удаляются, а экзоны - участки, кодирующие аминокислотную последовательность, со­единяются друг с другом, и незрелая пре-мРНК превращается в зрелую мРНК, с которой синтезируются (транслируются) белки клетки.

Для сплайсинга необходимо наличие специальных 3"- и 5"- последовательностей. Сплайсинг катализируется состоящим из РНК и белков большим комплексом, который называется сплайсосомой. Сплайсосома включает пять малых ядерных ри- бонуклеопротеидов (мяРНП) - и1, и2, и4, и5 и иб. РНК, вхо­дящая в состав мяРНП, взаимодействует с интроном и, возможно, участвует в катализе. Она принимает участие в сплайсинге интронов, содержащих в 5" сайте ГУ, и АГ в 3" сплайсинг-сайте.

Иногда мРНК в процессе созревания могут подвергаться альтернативному сплайсингу, который заключается в том, что имеющиеся в составе пре-мРНК интроны вырезаются в разных альтернативных комбинациях, при которых вырезаются и неко­торые экзоны. Некоторые из продуктов альтернативного сплай­синга пре-мРНК нефункциональны, как например, при определении пола у плодовой мушки дрозофилы, однако часто в результате альтернативного сплайсинга пре-мРНК одного ге­на образуются многочисленные мРНК и их белковые продукты.

В настоящее время известно, что у человека 94 % генов подвержено альтернативному сплайсингу (остальные б % генов не содержат интронов). Альтернативный сплайсинг у многокле­точных эукариот является ключевым механизмом увеличения разнообразия белков, не создавая избыточных копий гена, а также позволяет осуществлять тканеспецифическую и стадиес­пецифическую регуляцию экспрессии (проявления) генов.

Процессинг - это этап формирования функционально активных молекул РНК из первоначальных транскриптов. Процессинг рассматривают как посттранскрипционные модификации РНК, характерные для эукариот. (У прокариот процессы транскрипции и трансляции иРНК идут почти одновременно. Этот тип РНК у них процессинга не претерпевает.)

В результате процессинга первичные транскрипты РНК превращаются в зрелые РНК. Поскольку существует несколько различных типов РНК, то для каждого из них характерны свои модификации.

Процессинг информационной (матричной) РНК

На участках ДНК, кодирующих структуру белка, образуется предшественник информационной (матричной) РНК (пре-иРНК). Пре-иРНК копирует всю нуклеотидную последовательность ДНК от промотора до терминатора транскриптона. То есть она включает концевые нетранслируемые области (5" и 3"), интроны и экзоны.

Процессинг пре-иРНК включает в себя кэпирование, полиаде ни лирование, сплайсинг , а также некоторые другие процессы (метилирование, редактирование).

Кэпирование - это присоединение 7-метил-ГТФ (7-метилгуанозинтрифосфат) к 5"-концу РНК, а также метилирование рибозы двух первых нуклеотидов.

В результате образуется так называемая «шапка» (кэп). Функция кэпа связана с инициацией трансляции. Благодаря ему начальный участок иРНК прикрепляется к рибосоме. Также кэп защищает транскрипт от разрушительного действия рибонуклеаз и выполняют ряд функций в сплайсинге.

В результате полиаде ни лирования к 3"-концу РНК присоединяется полиадениловый участок (поли-А) длинной примерно 100-200 нуклеотидов (содержащих аденин). Данные реакции обеспечивает фермент поли-А-полимераза. Сигналом к полиаденилированию служит последовательность AAUAAACA на 3"-конце. В месте -CA происходит разрезание молекулы иРНК.

Поли-А защищает молекулу РНК от ферментативного распада.

Кэпирование и полиаденилирование происходят еще на этапе транскрипции. Кэп образуется сразу после высвобождения из РНК-полимеразы 5"-конца синтезируемой РНК, а поли-А образуется сразу после терминации транскрипции.

Сплайсинг представляет собой вырезание интронов и соединение экзонов. Экзоны могут соединяться по-разному. Таким образом из одного транскрипта могут образовываться разные иРНК. В сплайсинге информационной РНК участвуют малые ядерные РНК, которые имеют участки, комплементарные концам интронов и связываются с ними. Кроме мяРНК в сплайсинге участвуют различные белки. Все вместе (белки и мяРНК) формируют нуклеопротеидный комплекс - сплайсосому .

После процессинга иРНК становится короче своего предшественника иногда в десятки раз.

Процессинг других видов РНК

При процессинге молекул рибосомальных и транспортных РНК не происходит кэпирования и полиаденилирования. Модификации данных видов РНК происходят не только у эукариот, но и у прокариот.

Три вида рибосомальной РНК эукариот образуются в результате расщепления одного транскрипта (45S-РНК).

Процессинг ряда транспортных РНК может также включать расщепление одного транскрипта, другие тРНК получаются без расщепления. Особенностью процессинга тРНК является то, что молекула РНК проходит длинную цепь модификаций нуклеотидов: метилирование, дезаминирование и др.

Введение

Биосинтез белка можно разделить на стадии транскрипции , процессинга и трансляции . Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы мРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путем присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.

Процессинг

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. С появлением процессинга в эукариотической клетке стало возможено комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК.

Кэпирование

Химическая структура кэпа

При кэпировании происходит присоединение к 5"-концу транскрипта 7-метилгуанозина посредстом трифосфатного моста, соединяющего их в необычной позиции 5"-5", а также метилирование рибоз двух первых нуклеотидов. Процесс кэпирования начинается еще до окончания транскрипции молекулы пре-мРНК.

Функции кэп-группы:

  • регулирование экспорта мРНК из ядра;
  • защита 5"-конца транскрипта от экзонуклеаз;
  • участие в инициации трансляции

Полиаденилирование

Полиаденилирование заключается в присоединении к 3"-концу транскрипта от 100 до 200 остатков адениловой кислоты, осуществляемом специальным ферментом poly(A)-полимераза.

Сплайсинг

После полиаденилирования мРНК подвергается удалению интронов. Процесс катализируется сплайсосомой и называется сплайсингом.

Трансляция

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки . Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации .


Wikimedia Foundation . 2010 .

Смотреть что такое "Процессинг (биология)" в других словарях:

    У этого термина существуют и другие значения, см. Процессинг (биология). Процессинг деятельность, включающая в себя обработку и хранение информации, необходимой при осуществлении платежей. Термин часто используется в отрасли банковских… … Википедия

    Доставка малых РНК, содержащих шпильки, при помощи вектора на основе лентивируса и механизм РНК интерференции в клетках млекопитающих РНК интерференция (а … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток… … Википедия

    Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом… … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновая кислота (РНК) одна из трёх основных макромолекул (две другие … Википедия

    Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком… … Википедия

    Схема синтеза белка рибосомой Биосинтез белка сложный многостадийный процесс синтеза полипептидной цепи из … Википедия

Процессинг РНК (посттранскрипционные модификации РНК) - совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.

Наиболее известен процессинг матричных РНК, которые во время своего синтеза подвергаются модификациям: кэпированию, сплайсингу и полиаденилированию. Также модифицируются (другими механизмами) рибосомные РНК, транспортные РНК и малые ядерные РНК.

Сплайсинг (от англ. splice - сращивать или склеивать концы чего-либо) - процесс вырезания определенных нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. Наиболее часто этот процесс встречается при созревании информационной РНК (мРНК) у эукариот, при этом путём биохимических реакций с участием РНК и белков из мРНК удаляются участки, не кодирующие белок (интроны) и соединяются друг с другом кодирующие аминокислотную последовательность участки - экзоны. Таким образом незрелая пре-мРНК превращается в зрелую мРНК, с которой считываются (транслируются) белки клетки. Большинство генов прокариот, кодирующих белки, не имеют интронов, поэтому у них сплайсинг пре-мРНК встречается редко. У представителей эукариот, бактерий и архей встречается также сплайсинг транспортных РНК (тРНК) и других некодирующих РНК.

Процессинг и сплайсинг способны объединять структуры, удаленные друг от друга, в один ген, поэтому они имеют огромное эволюционное значение. Подобные процессы упрощают видообразование. Белки имеют блочную структуру. Например, фермент – ДНК-полимераза. Он представляет собой непрерывную полипептидную цепь. Он состоит из собственной ДНК-полимеразы и эндонуклеазы, которая расщепляет молекулу ДНК с конца. Фермент состоит из 2 доменов, которые образуют 2 независимые компактные частицы, связанные полипептидным мостиком. На границе между 2мя генами ферментов находится интрон. Когда-то домены были раздельными генами, а затем – сблизились.

Нарушения подобной структуры гена приводит к генным болезням. Нарушение строения интрона фенотипически незаметно, нарушение в экзонной последовательности приводят к мутации (мутации глобиновых генов).

Биосинтез белка - сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК. Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции. Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы иРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путём присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.



Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют рибонуклеиновые кислоты - РНК.

рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований - аденин, гуанин, урацил или цитозин

Матричная, или информационная, РНК (мРНК, или иРНК). Транскрипция. Для того чтобы синтезировать белки с заданными свойствами, к месту их построения поступает "инструкция" о порядке включения аминокислот в пептидную цепь. Эта инструкция заключена в нуклеотидной последовательности матричных, или информационных РНК (мРНК, иРНК), синтезируемых на соответствующих участках ДНК. Процесс синтеза мРНК называют транскрипцией.

В процессе синтеза, по мере продвижения РНК-полимеразы вдоль молекулы ДНК, пройденные ею одноцепочечные участки ДНК вновь объединяются в двойную спираль. Образуемая в ходе транскрипции мРНК содержит точную копию информации, записанной в соответствующем участке ДНК. Тройки рядом стоящих нуклеотидов мРНК, шифрующие аминокислоты, называют кодонами. Последовательность кодонов мРНК шифрует последовательность аминокислот в пептидной цепи. Кодонам мРНК соответствуют определенные аминокислоты (табл.1).



Транспортная РНК (тРНК). Трансляция. Важная роль в процессе использования наследственной информации клеткой принадлежит транспортной РНК (тРНК). Доставляя необходимые аминокислоты к месту сборки пептидных цепей, тРНК выполняет функцию трансляционного посредника.

В ней выделяют четыре главные части, выполняющие различные функции. Акцепторный "стебель" образуется двумя комплементарно соединенными концевыми частями тРНК. Он состоит из семи пар оснований.3"-конец этого стебля несколько длиннее и формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН-группой. К этому концу присоединяется транспортируемая аминокислота. Остальные три ветви представляют собой комплементарно спаренные последовательности нуклеотидов, которые заканчиваются неспаренными участками, образующими петли. Средняя из этих ветвей - антикодоновая - состоит из пяти пар нуклеотидов и содержит в центре своей петли антикодон. Антикодон - это три нуклеотида, комплементарные кодону мРНК, который шифрует аминокислоту, транспортируемую данной тРНК к месту синтеза пептида.

В целом различные виды тРНК характеризуются определенным постоянством нуклеотидной последовательности, которая чаще всего состоит из 76 нуклеотидов. Варьирование их числа связано главным образом с изменением количества нуклеотидов в дополнительной петле. Комплементарные участки, поддерживающие структуру тРНК, как правило, консервативны. Первичная структура тРНК, определяемая последовательностью нуклеотидов, формирует вторичную структуру тРНК, имеющую форму листа клевера. В свою очередь, вторичная структура обусловливает трехмерную третичную структуру, для которой характерно образование двух перпендикулярно расположенных двойных спиралей (рис.27). Одна из них образована акцепторной и ТψС-ветвями, другая - антикодоновой и D-ветвями.

На конце одной из двойных спиралей располагается транспортируемая аминокислота, на конце другой - антикодон. Эти участки оказываются максимально удаленными друг от друга. Стабильность третичной структуры тРНК поддерживается благодаря возникновению дополнительных водородных связей между основаниями полинуклеотидной цепи, находящимися в разных ее участках, но пространственно сближенных в третичной структуре.

Различные виды тРНК имеют сходную третичную структуру, хотя и с некоторыми вариациями.

Одной из особенностей тРНК является наличие в ней необычных оснований, возникающих вследствие химической модификации уже после включения нормального основания в полинуклеотидную цепь. Эти измененные основания обусловливают большое структурное многообразие тРНК при общем плане их строения.

14..Рибосомный цикл синтеза белка (инициация, элонгация, терминация). Посттрансляционные преобразования белков.

Рибосомный цикл синтеза белка. Процесс взаимодействия мРНК и тРНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах. Последние представляют собой сложные комплексы рРНК и разнообразных белков, в которых первые образуют каркас. Рибосомные РНК являются не только структурным компонентом рибосом, но и обеспечивают связывание их с определенной нуклеотидной последовательностью мРНК. Этим устанавливаются начало и рамка считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы и тРНК. Многочисленные белки, входящие в состав рибосом наряду с рРНК, выполняют как структурную, так и ферментативную роль.

Рибосомы про - и эукариот очень сходны по структуре и функциям. Они состоят из двух субчастиц: большой и малой. У эукариот малая субчастица образована одной молекулой рРНК и 33 молекулами разных белков. Большая субчастица объединяет три молекулы рРНК и около 40 белков. Прокариотические рибосомы и рибосомы митохондрий и пластид содержат меньше компонентов.

В рибосомах имеется две бороздки. Одна из них удерживает растущую полипептидную цепь, другая - мРНК. Кроме того, в рибосомах выделяют два участка, связывающих тРНК. В аминоацильном, А-участке размещается аминоацил-тРНК, несущая определенную аминокислоту. В пептидильном, П-участке располагается обычно тРНК, которая нагружена цепочкой аминокислот, соединенных пептидными связями. Образование А- и П-участков обеспечивается обеими субчастицами рибосомы.

В каждый момент рибосома экранирует сегмент мРНК протяженностью около 30 нуклеотидов. При этом обеспечивается взаимодействие только двух тРНК с двумя расположенными рядом кодонами мРНК (рис. 3.31).

Трансляция информации на «язык» аминокислот выражается в постепенном наращивании пептидной цепи в соответствии с инструкцией, заключенной в мРНК. Этот процесс протекает на рибосомах, которые обеспечивают последовательность расшифровки информации с помощью тРНК. В ходе трансляции можно выделить три фазы: инициацию, элонгацию и терминацию синтеза пептидной цепи.

Фаза инициации, или начало синтеза пептида, заключается в объединении двух находящихся до этого порознь в цитоплазме субчастиц рибосомы на определенном участке мРНК и присоединении к ней первой аминоацил-тРНК. Этим задается также рамка считывания информации, заключенной в мРНК (рис. 3.32).

В молекуле любой мРНК вблизи ее 5"-конца имеется участок, комплементарный рРНК малой субчастицы рибосомы и специфически узнаваемый ею. Рядом с ним располагается инициирующий стартовый кодон АУТ, шифрующий аминокислоту метионин. Малая субчастица рибосомы соединяется с мРНК таким образом, что стартовый кодон АУТ располагается в области, соответствующей П-участку. При этом только инициирующая тРНК, несущая метионин, способна занять место в недостроенном П-участке малой субчастицы и комплементарно соединиться со стартовым кодоном. После описанного события происходит объединение большой и малой субчастиц рибосомы с образованием ее пептидильного и аминоацильного участков (рис. 3.32).

К концу фазы инициации П-участок занят аминоацил-тРНК, связанной с метионином, тогда как в А-участке рибосомы располагается следующий за стартовым кодон.

Описанные процессы инициации трансляции катализируются особыми белками - факторами инициации, которые подвижно связаны с малой субчастицей рибосомы. По завершении фазы инициации и образования комплекса рибосома - мРНК - инициирующая аминоацил-тРНК эти факторы отделяются от рибосомы.

Фаза элонгации, или удлинения пептида, включает в себя все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. Она представляет собой циклически повторяющиеся события, при которых происходит специфическое узнавание аминоацил-тРНК очередного кодона, находящегося в А-участке, комплементарное взаимодействие между антикодоном и кодоном.

Благодаря особенностям трехмерной организации тРНК. (см. разд. 3.4.3.1) при соединении ее антикодона с кодоном мРНК. транспортируемая ею аминокислота располагается в А-участке, поблизости от ранее включенной аминокислоты, находящейся в П-участке. Между двумя аминокислотами образуется пептидная связь, катализуемая особыми белками, входящими в состав рибосомы. В результате предыдущая аминокислота теряет связь со своей тРНК и присоединяется к аминоацил-тРНК, расположенной в А-участке. Находящаяся в этот момент в П-участке тРНК высвобождается и уходит в цитоплазму (рис. 3.33).

Перемещение тРНК, нагруженной пептидной цепочкой, из А-участка в П-участок сопровождается продвижением рибосомы по мРНК на шаг, соответствующий одному кодону. Теперь следующий кодон приходит в контакт с А-участком, где он будет специфически «опознан» соответствующей аминоацил-тРНК, которая разместит здесь свою аминокислоту. Такая последовательность событий повторяется до тех пор, пока в А-участок рибосомы не поступит кодон-терминатор, для которого не существует соответствующей тРНК.

Сборка пептидной цепи осуществляется с достаточно большой скоростью, зависящей от температуры. У бактерий при 37 °С она выражается в добавлении к подипептиду от 12 до 17 аминокислот в 1 с. В эукариотических клетках эта скорость ниже и выражается в добавлении двух аминокислот в 1 с.

Фаза терминации, или завершения синтеза полипептида, связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ или У ГА), когда тот входит в зону А-участка рибосомы. При этом к последней аминокислоте в пептидной цепи присоединяется вода, и ее карбоксильный конец отделяется от тРНК. В результате завершенная пептидная цепь теряет связь с рибосомой, которая распадается на две субчастицы (рис. 3.34).

Посттрансляционные преобразования белков. Синтезированные в ходе трансляции пептидные цепи на основе своей первичной структуры приобретают вторичную и третичную, а многие-и четвертичную организацию, образуемую несколькими пептидными цепями. В зависимости от функций, выполняемых белками, их аминокислотные последовательности могут претерпевать различные преобразования, формируя функционально активные молекулы белка.

Многие мембранные белки синтезируются в виде пре-белков, имеющих на N-конце лидерную последовательность, которая обеспечивает him узнавание мембраны. Эта последовательность отщепляется при созревании и встраивании белка в мембрану. Секреторные белки также имеют на N-конце лидерную последовательность, которая обеспечивает их транспорт через мембрану.

Некоторые белки сразу после трансляции несут дополнительные аминокислотные про-последовательности, определяющие стабильность предшественников активных белков. При созревании белка они удаляются, обеспечивая переход неактивного пробелка в активный белок. Например, инсулин вначале синтезируется как пре-проинсулин. Во время секреции пре-последовательность отщепляется, а затем проинсулин подвергается модификации, при которой из него удаляется часть цепи и он превращается в зрелый инсулин.

I - РНК-полимераза связывается с ДНК и начинает синтезировать мРНК в направлении 5" → 3";

II - по мере продвижения РНК-полимеразы к 5"-концу мРНК прикрепляются рибосомы, начинающие синтез белка;

III - группа рибосом следует за РНК-полимеразой, на 5"-конце мРНК начинается ее деградация;

IV -процесс деградации протекает медленнее, чем транскрипция и трансляция;

V - после окончания транскрипции мРНК освобождается от ДНК, на ней продолжается трансляция и деградация на 5"-конце

Формируя третичную и четвертичную организацию в ходе посттрансляционных преобразований, белки приобретают способность активно функционировать, включаясь в определенные клеточные структуры и осуществляя ферментативные и другие функции.

Рассмотренные особенности реализации генетической информации в про - и эукариотических клетках обнаруживают принципиальное сходство этих процессов. Следовательно, механизм экспрессии генов, связанный с транскрипцией и последующей трансляцией информации, которая зашифрована с помощью биологического кода, сложился в целом еще до того, как были сформированы эти два типа клеточной организации. Дивергентная эволюция геномов про - и эукариот привела к возникновению различий в организации их наследственного материала, что не могло не отразиться и на механизмах его экспресии.

Постоянное совершенствование наших знаний об организации и функционировании материала наследственности и изменчивости обусловливает эволюцию представлений о гене как функциональной единице этого материала.

Взаимосвязь между геном и признаком. Пример. Гипотеза «один ген - один фермент», ее современная трактовка.

Открытия экзон-интронной организации эукариотических генов и возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная последовательность первичного транскрипта может обеспечить синтез нескольких полипептидных цепей с разными функциями или их модифицированных аналогов. Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий дыхательный фермент цитохром b. Он может существовать в двух формах (рис. 3.42). «Длинный» ген, состоящий из 6400 п. н., имеет 6 экзонов общей протяженностью 1155 п. н. и 5 интронов. Короткая форма гена состоит из 3300 п. н. и имеет 2 интрона. Она фактически представляет собой лишенный первых трех интронов «длинный» ген. Обе формы гена одинаково хорошо экспрессируются.

После удаления первого интрона «длинного» гена box на основе объединенной нуклеотидной последовательности двух первых экзонов и части нуклеотидов второго интрона образуется матрица для самостоятельного белка - РНК-матуразы (рис. 3.43). Функцией РНК-матуразы является обеспечение следующего этапа сплайсинга - удаление второго интрона из первичного транскрипта и в конечном счете образование матрицы для цитохрома b.

Другим примером может служить изменение схемы сплайсинга первичного транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная форма антител имеет на С-конце длинный «хвост» аминокислот, который обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого хвоста нет, что объясняется удалением в ходе сплайсинга из первичного транскрипта кодирующих этот участок нуклеотидов.

У вирусов и бактерий описана ситуация, когда один ген может одновременно являться частью другого гена или некоторая нуклеотидная последовательность ДНК может быть составной частью двух разных перекрывающихся генов. Например, на физической карте генома фага ФХ174 (рис. 3.44) видно, что последовательность гена В располагается внутри гена А, а ген Е является частью последовательности гена D. Этой особенностью организации генома фага удалось объяснить существующее несоответствие между относительно небольшим его размером (он состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех синтезируемых белках, которое превышает теоретически допустимое при данной емкости генома. Возможность сборки разных пептидных цепей на мРНК, синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет начать трансляцию другого пептида с новой точки отсчета.

Нуклеотидная последовательность гена В является одновременно частью гена А, а ген Е составляет часть гена D

В геноме фага λ были также обнаружены перекрывающиеся гены, транслируемые как со сдвигом рамки, так и в той же рамке считывания. Предполагается также возможность транскрибирования двух разных мРНК с обеих комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей, .определяющих движение РНК-полимеразы в разных направлениях вдоль молекулы ДНК.

Описанные ситуации, свидетельствующие о допустимости считывания разной информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных пептидов на основе одной и той же последовательности ДНК.

Имея в виду все сказанное, необходимо внести поправку в определение гена. Очевидно, нельзя больше говорить о гене как о непрерывной последовательности ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее время наиболее приемлемой все же следует считать формулу «Один ген - один поли-пептид», хотя некоторые авторы предлагают ее переиначить: «Один полипептид - один ген». Во всяком случае, под термином ген надо понимать функциональную единицу наследственного материала, по химической природе являющуюся полинуклеотидом и определяющую возможность синтеза полипептидной цепи, тРНК или рРНК.

Один ген один фермент.

В 1940 г Дж. Бидл и Эдвард Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований – у микроскопического грибка Neurospora crassa.. Ими были получены мутации, у которых; отсутствовала активность того-или иного фермента метаболизма. А это приводило к тому, что мутантный гриб бьл не способен сам синтезировать определенный метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду. Сформулированная Дж. Бидлом и Э. Татумом теория "один ген - один фермент" - быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.

Методы. селекции так называемых "биохимических мутаций", приводящих к нарушениям действия ферментов, обеспечивающих разные пути метаболизма, оказались очень плодотворными не только для науки, но и для практики. Сначала они привели к возникновению генетики и селекции промышленных микроорганизмов, а потом и к микробиологической промышленности, которая использует штаммы микроорганизмов, сверх продуцирующие такие стратегически важные вещества, как антибиотики, витамины, аминокислоты и др.. В основе принципов селекции и генной инженерии штаммов сверхпродуцентов лежит представление, что "один ген кодирует один фермент". И хотя это представление отлично практике приносит многомиллионные прибыли и спасает миллионы жизней (антибиотики) - оно не является окончательным. Один ген - это не только один фермент.

Это совокупность процессов обеспечивающих превращение синтезированной РНК (РНК-транскрипта) в функционально активные РНК (зрелые РНК), которые могут быть использованы при синтезе белков. Сами РНК-транскрипты функционально не активные. Процесс характерен для эукариот.

В результате процессинга изменяется структура и химическая организация РНК. РНК-транскрипт до образования зрелой РНК носит название про-иРНК (или в зависимости от вида РНК – про-тРНК, про-рРНК), т.е. предшественница РНК. Практически все РНК-транскрипты эукариот и прокариот(за исключением иРНК прокариот) подвергаются процессингу. Превращение РНК-транскрипта в зрелую РНК начинается в ядре, когда синтез РНК ещё не закончен и она не отделилась от ДНК. В зависимости от механизмов различают несколько этапов созревания РНК.

    Взаимодействие про-иРНК с белком.

    Метилирование про-иРНК.

    Кэпирование 5’-конца.

    Полиаденилирование.

    Сплайсинг.

Графическая последовательность этапов изображена на рисунке 58. Следует отметить, что в живых организмах все вышеперечисленные процессы идут параллельно друг другу.

а. Взаимодействие про-иРНК с белком.

У бактерий ещё до окончания транскрипции 5 ’ конец транскрипта сразу же соединяется с рибосомой и иРНК включается в трансляцию. Поэтому, для бактериальной иРНК практически никакая модификация не требуется. У эукариот, синтезированный транскрипт выходит из ядра, попадает в цитоплазму и там соединиться с рибосомой. На своём пути он должен быть ограждён от случайных встреч с сильными реагентами и, в тоже время быть, доступен ферментам процессинга. Поэтому РНК-транскрипт сразу же по мере удлинения взаимодействует с белком. Здесь уместна аналогия – РНК-транскрипт располагается на белке как на операционном столе, он фиксируется химическими связями, одновременно в нём становятся доступными места модификации. РНК, связанная с белком, носит название рибонуклеопротеид (информосома). В такой форме транскрипт находится в ядре. При выходе из ядра одни РНК продолжают оставаться в соединении с белком, другие выходят из комплекса и принимают участие в трансляции.

б. Метилирование про-иРНК.

Чаще всего происходит у бактерий, у которых имеется специальный аппарат защиты от чужеродной

ДНК (вирусной, фаговой). Этот аппарат состоит из целого ряда ферментов разрезающих чужеродную ДНК или РНК в определённых сайтах в которой находится специфическая последовательность нуклеотидов. Ферменты носят название – рестриктазы . Понятно, что собственный, только что синтезированный РНК-транскрипт, также может быть подвергнут атаке рестриктаз. Чтобы это не случилось специальные ферменты, называемые метилазы, метилируют собственный РНК-транскрипт в тех сайтах, которые могут быть разрезаны собственными ферментами. У эукариот РНК-транскрипт метилируется в меньшей степени.

Промотор Терминатор

Транскрипция

Про-иРНК фикси- Белок

рванная на белке

Метилирование про-иРНК

Кэпирование про-иРНК

Рис. 58. Схема основных моментов процессинга.

в. Кэпирование 5’конца.

Заключается в химическом и конформационном изменении

5’конца синтезированной РНК. Кэпирование происходит в момент синтеза РНК, ещё до её отделения. Процесс заключается в присоединении к свободному концу про-РНК специальных химических веществ, которые изменяют конформацию концевого участка. Кэпирование необходимо для инициации процесса трансляции.

Специальные ферменты присоединяют к 5’концу про-иРНК ГДФ (гуанозиндифосфат), а затем метилируют его.

5’ про-иРНК

СН 3

КЭП = ГДФ + СН 3

Рис.59. Структура КЭПа на 5’конце пре-иРНК эукариот.

Функции КЭПа.

    Инициирует синтез белка.

    Предохраняет про-иРНК от распада.

    Участвует в удалении интронов.

г. Полиаденилирование.

Это процесс присоединения к 3’ концу про-иРНК 100 – 200 остатков адениловой кислоты. Эти остатки носят название поли-А последовательности (поли-А хвосты). Полиаденилированию подвергаются не все про-иРНК. Например, молекулы всех типов гистонов не содержат поли-А последовательности. Полиаденилирование предохраняет иРНК от разрушения.

На растущей цепи и-РНК имеется специальная последовательность нуклеотидов (ААУААА). Особый фермент (полиА-полимераза) находит это сочетание нуклеотидов, разрезает про-иРНК в этом месте и формирует полиадениловый хвостик.

Значение поли –А последовательностей:

        Облегчают выход иРНК из ядра в цитоплазму.

        Предохраняют иРНК от разрушения.

Недавно было выявлено ещё одно интересное свойство поли-А последовательностей – они участвуют в терминации синтеза про-иРНК. РНК-полимераза, формируя последовательность ААУААА в про-иРНК, получает сигнал о завершении синтеза РНК-транскрипта. Но синтез сразу не прекращается. Полная остановка его наступает после того, как РНК-полимераза встречает на матричной нити ДНК специфическую последовательность нуклеотидов (у разных генов она разная), которая и даёт окончательный сигнал о прекращении синтеза РНК.

ГТФ ПолиА - последовательность

рАрАрАрАрАрАрАрА-ОН

СН 3

КЭП = ГТФ + СН 3

Рис. 60. Структура КЭПа на 5’конце про-иРНК эукариот и полиадениловая последовательность на 3’конце про -иРНК.

д. Сплайсинг.

В РНК-транскрипте содержится определённое количество нуклеотидных последовательностей, которые были необходимы для успешного завершения трансляции и последующей модификации транскрипта (кэпирования, полиаденилирования и т.д.). Для выполнения основной роли РНК в цитоплазме – трансляции, эти последовательности не только не будут иметь функционального значения, но могут помешать нормальному течению синтеза белка. Поэтому в клетке предусмотрен механизм освобождения первичного транскрипта от целого ряда последовательностей, не имеющих решающего значения в трансляции.

К таким последовательностям прежде всего относят интроны.

Ген, с которого транскрибировалась про-иРНК содержит кодирующие и некодирующие последовательности. Кодирующие последовательности гена определяют аминокислоту и их последовательность в белке. Не кодирующие последовательности таким свойством не обладают. Кодирующие и некодирующие последовательности в гене чередуются, и их количество зависит от индивидуальных генов. В первичном транскрипте также содержатся кодирующие и некодирующие последовательности. Такая организация генов и про-РНК характерна для эукариот. Некодирующие последовательности про-иРНК носят название интроны , а кодирующие –экзоны. Длина интронов может быть от 50 до 12000 нуклеотидов. Ген начинается и

кончается экзоном. Прерывистое строение гена характерно для большинства эукариот. Интроны могут содержать все виды РНК – иРНК, тРНК, рРНК.

Вся совокупность экзонов (кодирующих белки) в геноме человека занимают всего 1,1 – 1,4 %. Средний ген человека содержит 9 интронов. По мере упрощения

организации организмов совокупная величина их экзонов возрастает (например у бактерий она равна 86%).

В вырезании интронов из РНК-транскрипта и сшивании оставшихся экзонов, принимает участие многокомпонентный комплекс. Основными его составляющими являются малые ядерные РНК (мяРНК) и белки-ферменты.

В целом комплекс носит название малые ядерные рибонуклеопротеиды, мяРНП или сплайосома . Сам процесс достаточно сложен и состоит из нескольких этапов (см. рис. 58).

1. Формирование сплайосомы . К началу и концу интрона прикрепляются фрагменты белка и мяРНК (рис. 56, Д) формируя сплайосому. (рис. 56, Д) Прикрепление комплекса мяРНП (рис. 56, Е).

Экзон 1 Интрон Экзон 2

Петля

интрона вырезана

Рис. 61. Схема сплайсинга (объяснение в тексте).

    Сближение соседних экзонов, за счёт образования петли интрона. Разрезание на границе экзон-интрон и соединение соседних (первого и второго) экзонов(рис. 56, В).

    Удаление и разрушение петли и сплайосоме (рис. 56, Г, Ж).

Необходимо отметить, что при повреждении (мутации) интрона сплайсинг может быть не закончен, интрон не вырезан и конченый продукт – иРНК будет нести несвойственные ей последовательности нуклеотидов. Понятно, что это может привести к нарушению трансляции и выключению из метаболизма определённого белка

е. Альтернативный сплайсинг.

Такой тип сплайсинга происходит при экспрессии одного и того же гена в разных тканях.

Сущность его в том, что один и тот же участок гена в разных тканях может выступать в качестве интрона и экзона. Это приводит к образованию разных иРНК, которые кодируют белки с различной ферментативной активностью.

Так в клетках щитовидной железы синтезируется гормон кальцитонин. Он тормозит высвобождение кальция из костей. Ген, контролирующий синтез каль-

Ген, контролирующий кальцитонин

э и э и э и э и э и э

1 2 3 4 5 6

э и э и э и э и э и э

про-иРНК

1 2 3 4 5 6

В щитовидной железе В клетках головного мозга

иРНК

1 2 3 4 1 2 3 5 6

Кальцитонин Кальцитонинподобный белок

Рис.62. Альтернативный сплайсинг кальцитонина и кальцитонин-подобного белка.

цитонина, состоит из 6 экзонов, первичный транскрипт этого гена (про-иРНК) также состоит из 6 экзонов (рис. 62). Из первичного транскрипта формируется зрелая иРНК содержащая 4 экзона – 1,2,3,4. Экзоны № 5 и 6 были прочитаны как интроны и вырезаны. На основе такой и РНК синтезируется кальцитонин. В клетках головного мозга из первичного транскрипта, содержащего 6 экзонов, формируется зрелая иРНК, состоящая из 5 экзонов – 1,2,3,5,6. Четвёртый экзон был вырезан как интрон. Такая иРНК контролирует синтез кальцитонинподобного белка, отвечающего за вкусовое восприятие.

Другой ген Icarus (в названного в честь легендарного Икара) способен обеспечить за счёт альтернативного сплайсинга синтез 6 различных полипептидов. Кроме этого полипептиды образуют между собой в клетке около 20 различные ансамбли из одних и тех же полипептидов или различных.

Нарушение механизма сплайсинга может привести к патологическим состояниям, которые носят общее название талассемии . К ним относят заболевания связанные с частичным или полным подавление синтеза одной из цепей гемоглобин (α- или β-цепей). Например, болезни, связанные с недостатком синтеза β -цепи гемоглобина, могут возникнуть в результате мутаций в двух участка гена, кодирующего β-цепь – в сайте ответственном за полиаденилирование и в одном из интронов. В первом случае нарушается процесс формирования полиаденилового хвостика и формируется неполноценная β-цепь гемоглобина. Во втором случае сплайосома не способна вырезать повреждённый интрон и зрелая иРНК β-цепи гемоглобина не образуется. В любом случае нормальная функция эритроцитов будет существенно нарушена.

МЗ. Процессинг (или созревание РНК) это процесс превращения только что синтезированной, не активной РНК (про-иРНК) в функционально активную РНК. Процесс связан со структурными и химическими модификациями про-иРНК. Происходит в ядре до момента выхода РНК в цитоплазму. Состоит из нескольких этапов: присоединение про-иРНК к белку, метилирование некоторых оснований, маркировка одного из концов, полиаденилирование другого (противоположного) конца, вырезания интронов и сшивание экзонов. Последние два процесса носят название сплайсинг.

Вопросы к экзаменам.

1. Каким образом ферменты определяют большинство мест, где имеется повреждение молекулы ДНК?

ОТВЕТ. В месте повреждения молекулы ДНК в большинстве случаев наступает локальная денатурация. Её и определяют ферменты.

2. Что происходит в месте повреждения молекулы ДНК?

ОТВЕТ. В месте повреждения наступает локальная денатурация.

3. На основании чего ферменты репарации восстанавливают необходимую последовательность нуклеотидов в месте повреждения одной нити ДНК?

ОТВЕТ. На основании принципа комплементарности к нуклеотидам оппозитного участка нити ДНК.

4. На основании чего ДНК-полимераза правильно застраивает нуклеотидами бреши в повреждённой нити ДНК?

ОТВЕТ. На основании принципа комплементарности нуклеотидов застраиваемой цепи к нуклеотидам оппозитной нити.

5. Какой тип репарации осуществляется ферментом, который активируется фотоном?

ОТВЕТ. Фотореактивация.

6. Какой фермент осуществляет репарацию используя энергию солнца?

ОТВЕТ. Фотолиаза.

    Какой фермент принимает непосредственное участие в синтезе молекуле РНК?

ОТВЕТ. ДНК-зависимая РНК-полимераза или РНК-полимераза.

    Перечислите периоды транскрипции.

ОТВЕТ. Инициация, элонгация, терминация.

    Из каких компонентов состоит инициаторный комплекс в процессе транскрипции?

ОТВЕТ. Из специального белка осевшего на промотор, РНК-полимеразы и транскрипционных факторов.

9. Как называется участок ДНК, где формируется инициаторный комплекс в процессе транскрипции?

ОТВЕТ. На промоторе.

10. Как называется последовательность нуклеотидов у прокариот, которую определяет специальный белок осаждающий на промоторе в период инициации транскрипции?

ОТВЕТ. Блок Прибнова.

11. Как называется последовательность нуклеотидов у эукариот, которую определяет специальный белок осаждающий на промоторе в период инициации транскрипции?

ОТВЕТ. ТАТА-бокс.

12. Где в молекуле ДНК располагается блок Прибнова у прокариот?

ОТВЕТ. На промоторе.

13. Где в молекуле ДНК располагается ТАТА-бокс у эукариот?

ОТВЕТ. На промоторе.

14. Как называется ферментативный комплекс, который формирует транскрипционный глазок?

ОТВЕТ. Инициаторный комплекс.

15. Как называется участок молекулы ДНК с которого начинается синтез РНК?

ОТВЕТ. Стартовой точкой, сайт начала транскрипции.

16. Назовите нуклеотиды, которые находятся в терминаторе и возможно участвуют в прекращении транскрипции.

ОТВЕТ. Г,Ц.

17. Назовите вторичную структуру в терминаторе, которая возможно участвует в прекращении транскрипции,

ОТВЕТ. Шпилька.

18. Как называются кодоны находящиеся в терминаторе и возможно участвующие в прекращении транскрипции.

ОТВЕТ. Бессмысленные (нонсенс) кодоны.