Изчисляване на производни на степенно-експоненциални функции. Комплексни производни

Степенно-експоненциална функция е функция, която има формата на степенна функция
y = u v,
в която основата u и степента v са някои функции на променливата x:
u = u (х); v = v (х).
Тази функция също се нарича експоненциаленили .

Обърнете внимание, че степенно-експоненциалната функция може да бъде представена в експоненциална форма:
.
Затова се нарича още комплексна експоненциална функция.

Производна на степенно-експоненциална функция

Изчисляване с логаритмична производна

Нека намерим производната на степен експоненциална функция
(2) ,
където и са функции на променливата.
За да направим това, ние логаритмуваме уравнение (2), използвайки свойството на логаритъма:
.
Диференцирайте по отношение на променливата x:
(3) .
Ние кандидатстваме правила за диференциране на сложни функциии работи:
;
.

Заменяме в (3):
.
Оттук
.

И така, намерихме производната на степенно-експоненциалната функция:
(1) .
Ако степента е постоянна, тогава . Тогава производната е равна на производната на сложна степенна функция:
.
Ако основата на степента е постоянна, тогава . Тогава производната е равна на производната на сложна експоненциална функция:
.
Когато и са функции на x, тогава производната на степенно-експоненциалната функция е равна на сумата от производните на комплексната степен и експоненциалната функция.

Изчисляване на производната чрез редукция до комплексна експоненциална функция

Сега нека намерим производната на степенно-експоненциалната функция
(2) ,
представяйки го като комплексна експоненциална функция:
(4) .

Нека разграничим продукта:
.
Приложете правилото за намиране на производната сложна функция:

.
И отново получихме формула (1).

Пример 1

Намерете производната на следната функция:
.

Изчисляваме с помощта на логаритмичната производна. Нека логаритмуваме оригиналната функция:
(A1.1) .

От таблицата на производните намираме:
;
.
Използвайки формулата за производна на продукта, имаме:
.
Ние правим разлика (A1.1):
.
Тъй като
,
Че
.

Извеждане на формулата за производна на степенна функция (x на степен a). Разглеждат се производни от корени на x. Формула за производна на степенна функция по-висок ред. Примери за изчисляване на производни.

Съдържание

Вижте също: Степенна функция и корени, формули и графика
Графики на степенна функция

Основни формули

Производната на x на степен a е равна на a по x на степен минус едно:
(1) .

Производната на n-тия корен от x на m-та степен е:
(2) .

Извеждане на формулата за производна на степенна функция

Случай x > 0

Да разгледаме степенна функция на променливата x с експонента a:
(3) .
Тук a е произволно реално число. Нека първо разгледаме случая.

За да намерим производната на функция (3), използваме свойствата на степенна функция и я трансформираме в следната форма:
.

Сега намираме производната, използвайки:
;
.
Тук .

Формула (1) е доказана.

Извеждане на формулата за производна на корен от степен n от x на степен m

Сега разгледайте функция, която е корен на следната форма:
(4) .

За да намерим производната, трансформираме корена в степенна функция:
.
Сравнявайки с формула (3), виждаме, че
.
Тогава
.

Използвайки формула (1), намираме производната:
(1) ;
;
(2) .

На практика не е необходимо да запомняте формула (2). Много по-удобно е първо да трансформирате корените в степенни функции и след това да намерите техните производни, като използвате формула (1) (вижте примерите в края на страницата).

Случай x = 0

Ако , тогава степенната функция е дефинирана за стойността на променливата x = 0 . Нека намерим производната на функция (3) при x = 0 . За да направим това, използваме определението за производно:
.

Нека заместим x = 0 :
.
В този случай под производна имаме предвид дясната граница, за която .

Така открихме:
.
От това става ясно, че за , .
В , .
В , .
Този резултат се получава и от формула (1):
(1) .
Следователно формула (1) е валидна и за x = 0 .

Случай x< 0

Разгледайте отново функция (3):
(3) .
За определени стойности на константата a се определя и за отрицателни стойности на променливата x. А именно нека бъде рационално число. Тогава тя може да бъде представена като несъкратима дроб:
,
където m и n са цели числа без общ делител.

Ако n е нечетно, тогава степенната функция също е дефинирана за отрицателни стойности на променливата x. Например, когато n = 3 и m = 1 имаме кубичен корен от x:
.
Дефинира се и за отрицателни стойности на променливата x.

Нека намерим производната на степенната функция (3) за и за рационални стойности на константата a, за която е дефинирана. За да направите това, нека представим x в следната форма:
.
Тогава ,
.
Намираме производната, като поставим константата извън знака на производната и приложим правилото за диференциране на сложна функция:

.
Тук . Но
.
От тогава
.
Тогава
.
Тоест формула (1) е валидна и за:
(1) .

Производни от по-висок порядък

Сега нека намерим производни от по-висок порядък на степенната функция
(3) .
Вече намерихме производната от първи ред:
.

Като вземем константата a извън знака на производната, намираме производната от втори ред:
.
По същия начин намираме производни от трети и четвърти ред:
;

.

От това става ясно, че производна от произволен n-ти редима следната форма:
.

забележи това ако a е естествено число, тогава n-тата производна е константа:
.
Тогава всички следващи производни са равни на нула:
,
при .

Примери за изчисляване на производни

Пример

Намерете производната на функцията:
.

Нека преобразуваме корените в степени:
;
.
Тогава оригиналната функция приема формата:
.

Намиране на производни на степени:
;
.
Производната на константата е нула:
.

Много лесен за запомняне.

Е, нека не отиваме далеч, нека веднага разгледаме обратната функция. Коя функция е обратна на експоненциалната функция? Логаритъм:

В нашия случай основата е числото:

Такъв логаритъм (т.е. логаритъм с основа) се нарича „естествен“ и ние използваме специална нотация за него: пишем вместо това.

На какво е равно? Разбира се, .

Производната на естествения логаритъм също е много проста:

Примери:

  1. Намерете производната на функцията.
  2. Каква е производната на функцията?

Отговори: Експоненциалният и естественият логаритъм са уникално прости функции от производна гледна точка. Експоненциалните и логаритмичните функции с всяка друга основа ще имат различна производна, която ще анализираме по-късно, след като преминем през правилата за диференциране.

Правила за диференциране

Правила на какво? Пак нов мандат, пак?!...

Диференциацияе процесът на намиране на производната.

Това е всичко. Как иначе можете да наречете този процес с една дума? Не производна... Математиците наричат ​​диференциала същото нарастване на функция при. Този термин идва от латинския differentia - разлика. Тук.

Когато извличаме всички тези правила, ще използваме две функции, например и. Ще ни трябват и формули за техните увеличения:

Има общо 5 правила.

Константата се изважда от знака за производна.

Ако - някои постоянно число(константа), тогава.

Очевидно това правило работи и за разликата: .

Нека го докажем. Нека бъде или по-просто.

Примери.

Намерете производните на функциите:

  1. в точка;
  2. в точка;
  3. в точка;
  4. в точката.

Решения:

  1. (производната е една и съща във всички точки, тъй като това линейна функция, помня?);

Производно на продукта

Тук всичко е подобно: да влезем нова функцияи намерете увеличението му:

Производна:

Примери:

  1. Намерете производните на функциите и;
  2. Намерете производната на функцията в точка.

Решения:

Производна на експоненциална функция

Сега знанията ви са достатъчни, за да научите как да намирате производната на всяка експоненциална функция, а не само на експоненти (забравили ли сте вече какво е това?).

И така, къде е някакво число.

Вече знаем производната на функцията, така че нека се опитаме да намалим нашата функция до нова основа:

За това ще използваме просто правило: . Тогава:

Е, проработи. Сега опитайте да намерите производната и не забравяйте, че тази функция е сложна.

Се случи?

Ето, проверете сами:

Формулата се оказа много подобна на производната на експонента: както беше, остава същата, само се появи фактор, който е просто число, но не и променлива.

Примери:
Намерете производните на функциите:

Отговори:

Това е просто число, което не може да се изчисли без калкулатор, тоест не може да се запише в по-прост вид. Затова го оставяме в този вид в отговора.

    Имайте предвид, че тук е частното на две функции, така че прилагаме съответното правило за диференциране:

    В този пример продуктът на две функции:

Производна на логаритмична функция

Тук е подобно: вече знаете производната на естествения логаритъм:

Следователно, за да намерите произволен логаритъм с различна основа, например:

Трябва да намалим този логаритъм до основата. Как се променя основата на логаритъм? Надявам се, че помните тази формула:

Само сега вместо това ще напишем:

Знаменателят е просто константа (постоянно число, без променлива). Производната се получава много просто:

Производни на експоненциална и логаритмични функциипочти никога не се появяват в Единния държавен изпит, но няма да навреди да ги знаете.

Производна на сложна функция.

Какво е "сложна функция"? Не, това не е логаритъм и не е арктангенс. Тези функции могат да бъдат трудни за разбиране (въпреки че ако намирате логаритъма за труден, прочетете темата „Логаритми“ и ще се оправите), но от математическа гледна точка думата „комплексен“ не означава „труден“.

Представете си малка конвейерна лента: двама души седят и извършват някакви действия с някакви предмети. Например, първият увива шоколадово блокче в обвивка, а вторият го завързва с панделка. Резултатът е съставен обект: шоколадово блокче, увито и завързано с панделка. За да изядете блокче шоколад, трябва да направите обратните стъпки обратен ред.

Нека създадем подобен математически конвейер: първо ще намерим косинуса на число и след това ще повдигнем на квадрат полученото число. И така, получаваме число (шоколад), аз намирам неговия косинус (обвивка), а след това вие повдигате на квадрат полученото (завързвате го с панделка). Какво стана? функция. Това е пример за сложна функция: когато, за да намерим нейната стойност, извършваме първото действие директно с променливата и след това второ действие с това, което е резултат от първото.

С други думи, сложна функция е функция, чийто аргумент е друга функция: .

За нашия пример,.

Можем лесно да направим същите стъпки в обратен ред: първо го повдигате на квадрат, а аз след това търся косинуса на полученото число: . Лесно е да се досетите, че резултатът почти винаги ще бъде различен. Важна характеристикасложни функции: когато редът на действията се промени, функцията се променя.

Втори пример: (същото нещо). .

Действието, което извършваме последно, ще бъде извикано "външна" функция, а първо извършеното действие - съотв "вътрешна" функция(това са неофициални имена, използвам ги само за да обясня материала на прост език).

Опитайте се да определите сами коя функция е външна и коя вътрешна:

Отговори:Разделянето на вътрешни и външни функции е много подобно на промяната на променливи: например във функция

  1. Какво действие ще извършим първо? Първо, нека изчислим синуса и едва след това го кубираме. Това означава, че това е вътрешна функция, но външна.
    И първоначалната функция е тяхната композиция: .
  2. Вътрешен: ; външен: .
    Преглед: .
  3. Вътрешен: ; външен: .
    Преглед: .
  4. Вътрешен: ; външен: .
    Преглед: .
  5. Вътрешен: ; външен: .
    Преглед: .

Променяме променливи и получаваме функция.

Е, сега ще извлечем нашето шоколадово блокче и ще потърсим производната. Процедурата винаги е обратна: първо търсим производната на външната функция, след това умножаваме резултата по производната на вътрешната функция. Във връзка с оригиналния пример изглежда така:

Друг пример:

И така, нека най-накрая формулираме официалното правило:

Алгоритъм за намиране на производната на сложна функция:

Изглежда просто, нали?

Нека проверим с примери:

Решения:

1) Вътрешен: ;

Външен: ;

2) Вътрешен: ;

(Само не се опитвайте да го отрежете досега! Нищо не излиза изпод косинуса, помните ли?)

3) Вътрешен: ;

Външен: ;

Веднага става ясно, че това е сложна функция на три нива: в крайна сметка това вече е сложна функция сама по себе си и ние също извличаме корена от нея, тоест извършваме третото действие (поставете шоколада в обвивка и с панделка в куфарчето). Но няма причина да се страхувате: ние все пак ще „разопаковаме“ тази функция в същия ред, както обикновено: от края.

Тоест, първо диференцираме корена, след това косинуса и едва след това израза в скоби. И след това умножаваме всичко.

В такива случаи е удобно действията да се номерират. Тоест нека си представим това, което знаем. В какъв ред ще извършим действия за изчисляване на стойността на този израз? Да разгледаме един пример:

Колкото по-късно се извърши действието, толкова по-„външна“ ще бъде съответната функция. Последователността на действията е същата като преди:

Тук гнезденето обикновено е 4-степенно. Да определим хода на действие.

1. Радикален израз. .

2. Корен. .

3. Синус. .

4. Квадрат. .

5. Събираме всичко заедно:

ПРОИЗВОДНО. НАКРАТКО ЗА ГЛАВНОТО

Производна на функция- отношението на нарастването на функцията към увеличението на аргумента за безкрайно малко увеличение на аргумента:

Основни производни:

Правила за диференциация:

Константата се изважда от знака за производна:

Производна на сумата:

Производно на продукта:

Производна на коефициента:

Производна на сложна функция:

Алгоритъм за намиране на производната на сложна функция:

  1. Дефинираме „вътрешната“ функция и намираме нейната производна.
  2. Дефинираме „външната“ функция и намираме нейната производна.
  3. Умножаваме резултатите от първа и втора точка.

Комплексни производни. Логаритмична производна.
Производна на степенно-експоненциална функция

Продължаваме да подобряваме нашата техника за диференциране. В този урок ще консолидираме материала, който сме покрили, ще разгледаме по-сложни производни, а също така ще се запознаем с нови техники и трикове за намиране на производна, по-специално с логаритмичната производна.

На онези читатели, които имат ниско нивоподготовка, трябва да се обърнете към статията Как да намерим производната? Примери за решения, което ще ви позволи да повишите уменията си почти от нулата. След това трябва внимателно да проучите страницата Производна на сложна функция, разберете и решете всичкопримерите, които дадох. Този урок логично е третият поред и след като го усвоите, вие уверено ще различавате доста сложни функции. Не е желателно да заемате позицията „Къде другаде? Да, това е достатъчно! ”, тъй като всички примери и решения са взети от реални тестовеи често се срещат в практиката.

Да започнем с повторение. На урока Производна на сложна функцияРазгледахме няколко примера с подробни коментари. В хода на изучаване на диференциално смятане и други клонове на математическия анализ ще трябва да диференцирате много често и не винаги е удобно (и не винаги е необходимо) да описвате примери в големи подробности. Затова ще се упражняваме да намираме производни устно. Най-подходящите „кандидати“ за това са производни на най-простите от сложните функции, например:

Според правилото за диференциране на сложни функции :

При изучаване на други теми от матан в бъдеще най-често не се изисква такъв подробен запис; предполага се, че ученикът знае как да намира такива производни на автопилот. Нека си представим, че в 3 часа през нощта телефонът звънна и приятен глас попита: „Колко е производната на тангенса на две X?“ Това трябва да бъде последвано от почти мигновен и учтив отговор: .

Първият пример ще бъде незабавно предназначен за независимо решение.

Пример 1

Намерете устно следните производни, в едно действие, например: . За да изпълните задачата, трябва само да използвате таблица с производни на елементарни функции(ако още не сте се сетили). Ако имате затруднения, препоръчвам ви да прочетете отново урока Производна на сложна функция.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Отговори в края на урока

Комплексни производни

След предварителна артилерийска подготовка, примерите с 3-4-5 влагане на функции ще бъдат по-малко страшни. Следващите два примера може да изглеждат сложни за някои, но ако ги разберете (някой ще пострада), тогава почти всичко останало в диференциалното смятане ще изглежда като детска шега.

Пример 2

Намерете производната на функция

Както вече беше отбелязано, при намиране на производната на сложна функция, на първо място, е необходимо вярноРАЗБЕРЕТЕ вашите инвестиции. В случаите, когато има съмнения, напомням ви за полезна техника: вземаме експерименталната стойност на „x“ например и се опитваме (мислено или в чернова) да заменим тази стойност в „ужасния израз“.

1) Първо трябва да изчислим израза, което означава, че сумата е най-дълбокото вграждане.

2) След това трябва да изчислите логаритъма:

4) След това кубирайте косинуса:

5) На петата стъпка разликата:

6) И накрая, най-външната функция е Корен квадратен:

Формула за диференциране на сложна функция се прилагат в обратен ред, от най-външната функция към най-вътрешната. Ние решаваме:

Изглежда, че няма грешки...

(1) Вземете производната на корен квадратен.

(2) Вземаме производната на разликата, използвайки правилото

(3) Производната на тройка е нула. Във втория член вземаме производната на степента (куб).

(4) Вземете производната на косинуса.

(5) Вземете производната на логаритъма.

(6) И накрая, вземаме производната на най-дълбокото вграждане.

Може да изглежда твърде трудно, но това не е най-жестокият пример. Вземете например колекцията на Кузнецов и ще оцените цялата красота и простота на анализираната производна. Забелязах, че обичат да дават подобно нещо на изпит, за да проверят дали студентът разбира как се намира производната на сложна функция или не разбира.

Следващият пример трябва да решите сами.

Пример 3

Намерете производната на функция

Съвет: Първо прилагаме правилата за линейност и правилото за диференциране на продукта

Пълно решение и отговор в края на урока.

Време е да преминем към нещо по-малко и по-хубаво.
Не е необичайно примерът да показва произведението не на две, а на три функции. Как да намерим производната на произведението на три фактора?

Пример 4

Намерете производната на функция

Първо разглеждаме, възможно ли е да превърнем произведението на три функции в произведение на две функции? Например, ако имаме два полинома в произведението, тогава можем да отворим скобите. Но в разглеждания пример всички функции са различни: степен, степен и логаритъм.

В такива случаи е необходимо последователноприложете правилото за диференциране на продукта два пъти

Номерът е, че с “y” означаваме произведението на две функции: , а с “ve” означаваме логаритъма: . Защо може да се направи това? възможно ли е – това не е произведение на два фактора и правилото не работи?! Няма нищо сложно:

Сега остава правилото да се приложи втори път в скоби:

Все още може да бъдете перверзни и да извадите нещо извън скоби, но навътре в такъв случайПо-добре е да оставите отговора в тази форма - ще бъде по-лесно да се провери.

Разглежданият пример може да бъде решен по втория начин:

И двете решения са абсолютно равностойни.

Пример 5

Намерете производната на функция

Това е пример за независимо решение, в примера се решава по първия метод.

Нека да разгледаме подобни примери с дроби.

Пример 6

Намерете производната на функция

Има няколко начина, по които можете да отидете тук:

Или така:

Но решението ще бъде написано по-компактно, ако първо използваме правилото за диференциране на частното , като се вземе за целия числител:

По принцип примерът е решен и ако се остави така, няма да е грешка. Но ако имате време, винаги е препоръчително да проверите черновата, за да видите дали отговорът може да бъде опростен? Нека намалим израза на числителя до общ знаменателИ да се отървем от триетажната част:

Недостатъкът на допълнителните опростявания е, че съществува риск от грешка не при намиране на производната, а при банални училищни трансформации. От друга страна, учителите често отхвърлят задачата и искат да „напомнят“ производната.

По-прост пример за самостоятелно решаване:

Пример 7

Намерете производната на функция

Продължаваме да овладяваме методите за намиране на производната и сега ще разгледаме типичен случай, когато "ужасният" логаритъм е предложен за диференциране

Пример 8

Намерете производната на функция

Тук можете да отидете по дългия път, като използвате правилото за разграничаване на сложна функция:

Но още първата стъпка веднага ви потапя в униние - трябва да вземете неприятната производна от дробна степен, а след това и от дроб.

Ето защо предикак да вземем производната на „сложен“ логаритъм, първо се опростява с помощта на добре познати училищни свойства:



! Ако имате учебна тетрадка под ръка, копирайте тези формули директно там. Ако нямате тетрадка, препишете ги на лист хартия, тъй като останалите примери от урока ще се въртят около тези формули.

Самото решение може да бъде написано по следния начин:

Нека трансформираме функцията:

Намиране на производната:

Предварителното преобразуване на самата функция значително опрости решението. По този начин, когато подобен логаритъм е предложен за диференциране, винаги е препоръчително да го „разбиете“.

А сега няколко прости примера, които можете да решите сами:

Пример 9

Намерете производната на функция

Пример 10

Намерете производната на функция

Всички трансформации и отговори са в края на урока.

Логаритмична производна

Ако производното на логаритмите е толкова сладка музика, тогава възниква въпросът: възможно ли е в някои случаи логаритъмът да се организира изкуствено? Мога! И дори необходимо.

Пример 11

Намерете производната на функция

Наскоро разгледахме подобни примери. Какво да правя? Можете последователно да приложите правилото за диференциране на частното и след това правилото за диференциране на продукта. Недостатъкът на този метод е, че в крайна сметка получавате огромна триетажна фракция, с която изобщо не искате да се занимавате.

Но на теория и практика има такова прекрасно нещо като логаритмичната производна. Логаритмите могат да бъдат организирани изкуствено, като ги "окачите" от двете страни:

Забележка : защото функция може да приема отрицателни стойности, тогава, най-общо казано, трябва да използвате модули: , които ще изчезнат в резултат на диференциация. Текущият дизайн обаче също е приемлив, като по подразбиране се взема предвид комплексзначения. Но ако в цялата строгост, тогава и в двата случая трябва да се направи уговорка, че.

Сега трябва да „разпаднете“ логаритъма на дясната страна колкото е възможно повече (формули пред очите ви?). Ще опиша този процес много подробно:

Да започнем с диференциацията.
Заключваме и двете части под премията:

Производната на дясната страна е доста проста, няма да я коментирам, защото ако четете този текст, трябва да можете да се справите уверено.

Какво ще кажете за лявата страна?

От лявата страна имаме сложна функция. Предвиждам въпроса: „Защо, има ли една буква „Y“ под логаритъма?“

Факт е, че тази „игра с една буква“ - САМОТО Е ФУНКЦИЯ(ако не е много ясно, вижте статията Производна на имплицитно посочена функция). Следователно логаритъмът е външна функция, а "y" е вътрешна функция. И използваме правилото за диференциране на сложна функция :

От лявата страна, като по магия, имаме производна. След това, съгласно правилото за пропорцията, прехвърляме "y" от знаменателя на лявата страна към горната част на дясната страна:

А сега нека си спомним за какъв вид функция „играч“ говорихме по време на диференциацията? Нека да разгледаме състоянието:

Окончателен отговор:

Пример 12

Намерете производната на функция

Това е пример, който можете да решите сами. Примерен дизайн на пример от този тип е в края на урока.

С помощта на логаритмичната производна беше възможно да се реши всеки от примерите № 4-7, друго нещо е, че функциите там са по-прости и може би използването на логаритмичната производна не е много оправдано.

Производна на степенно-експоненциална функция

Все още не сме обмисляли тази функция. Степенно-експоненциална функция е функция, за която степента и основата зависят от "x". Класически пример, който ще ви бъде даден във всеки учебник или лекция:

Как да намерим производната на степенно-експоненциална функция?

Необходимо е да се използва току-що обсъдената техника - логаритмичната производна. Закачаме логаритми от двете страни:

Като правило от дясната страна степента се изважда от под логаритъма:

В резултат от дясната страна имаме произведението на две функции, които ще бъдат диференцирани по стандартната формула .

Намираме производната; за да направим това, поставяме двете части под черти:

Допълнителните действия са прости:

Накрая:

Ако някое преобразуване не е напълно ясно, моля, прочетете внимателно отново обясненията на Пример № 11.

IN практически задачиСтепенно-експоненциалната функция винаги ще бъде по-сложна от примера, разгледан в лекцията.

Пример 13

Намерете производната на функция

Използваме логаритмичната производна.

От дясната страна имаме константа и произведението на два фактора - “x” и “логаритъм от логаритъм x” (друг логаритъм е вложен под логаритъма). Когато диференцирате, както си спомняме, е по-добре незабавно да преместите константата от производния знак, така че да не ви пречи; и, разбира се, прилагаме познатото правило :


Когато извеждаме първата формула от таблицата, ще продължим от дефиницията на производната функция в точка. Да вземем къде х– всяко реално число, т.е. х– всяко число от областта на дефиниране на функцията. Нека запишем границата на съотношението на нарастването на функцията към увеличението на аргумента при:

Трябва да се отбележи, че под граничния знак се получава изразът, който не е несигурността на нула, разделена на нула, тъй като числителят не съдържа безкрайно малка стойност, а точно нула. С други думи, увеличението на константна функция винаги е нула.

По този начин, производна на постоянна функцияе равно на нула в цялата област на дефиниране.

Производна на степенна функция.

Формулата за производната на степенна функция има формата , където степента стр– всяко реално число.

Нека първо докажем формулата за естествения показател, т.е p = 1, 2, 3, …

Ще използваме определението за производна. Нека запишем границата на съотношението на увеличението на степенна функция към увеличението на аргумента:

За да опростим израза в числителя, се обръщаме към биномната формула на Нютон:

следователно

Това доказва формулата за производната на степенна функция за естествен показател.

Производна на експоненциална функция.

Представяме извеждането на формулата за производна въз основа на определението:

Стигнахме до несигурност. За да го разширим, въвеждаме нова променлива и в . Тогава . При последния преход използвахме формулата за преход към нова логаритмична основа.

Нека заместим в първоначалния лимит:

Ако си припомним втората забележителна граница, стигаме до формулата за производната на експоненциалната функция:

Производна на логаритмична функция.

Нека докажем формулата за производната на логаритмична функция за всички хот домейна на дефиницията и всички валидни стойности на основата алогаритъм По дефиниция на производна имаме:

Както забелязахте, по време на доказателството трансформациите бяха извършени с помощта на свойствата на логаритъма. Равенство е вярно поради втората забележителна граница.

Производни на тригонометрични функции.

За да изведем формули за производни на тригонометрични функции, ще трябва да си припомним някои тригонометрични формули, както и първото забележително ограничение.

По дефиниция на производната за функцията синус имаме .

Нека използваме формулата за разликата на синусите:

Остава да се обърнем към първата забележителна граница:

По този начин, производната на функцията грях хИма cos x.

Формулата за производната на косинуса се доказва по абсолютно същия начин.

Следователно, производната на функцията cos xИма – грях х.

Ще изведем формули за таблицата с производни за тангенс и котангенс, използвайки доказани правила за диференциране (производна на дроб).

Производни на хиперболични функции.

Правилата за диференциране и формулата за производната на експоненциалната функция от таблицата с производни ни позволяват да изведем формули за производните на хиперболичния синус, косинус, тангенс и котангенс.

Производна на обратната функция.

За да избегнем объркване по време на представяне, нека обозначим с долен индекс аргумента на функцията, чрез която се извършва диференцирането, тоест това е производната на функцията f(x)от х.

Сега нека формулираме правило за намиране на производната на обратна функция.

Нека функциите y = f(x)И x = g(y)взаимно обратни, определени на интервалите и съответно. Ако в точка има крайна ненулева производна на функцията f(x), тогава в точката има крайна производна на обратната функция g(y), и . В друга публикация .

Това правило може да бъде преформулирано за всеки хот интервала , тогава получаваме .

Нека проверим валидността на тези формули.

Нека намерим обратната функция за натурален логаритъм (Тук ге функция и х- аргумент). След като решихме това уравнение за х, получаваме (тук хе функция и г– нейният аргумент). Това е, и взаимно обратни функции.

От таблицата на производните виждаме това И .

Нека се уверим, че формулите за намиране на производните на обратната функция ни водят до същите резултати:

Както можете да видите, получихме същите резултати като в таблицата с производни.

Сега имаме знанията да доказваме формули за производните на обратни тригонометрични функции.

Нека започнем с производната на арксинуса.

. След това, използвайки формулата за производната на обратната функция, получаваме

Остава само да се извършат трансформациите.

Тъй като диапазонът на арксинуса е интервалът , Че (виж раздела за основните елементарни функции, техните свойства и графики). Затова не го обмисляме.

следователно . Областта на дефиниране на производната на арксинус е интервалът (-1; 1) .

За арк косинуса всичко се прави по абсолютно същия начин:

Нека намерим производната на арктангенса.

За обратната функция е .

Нека изразим аркутангенса чрез аркосинус, за да опростим получения израз.

Позволявам arctgx = z, Тогава

следователно

Производната на аркотангенса се намира по подобен начин: