Строение солнечной атмосферы кратко. Атмосфера солнца

Строение Солнца

1 – ядро, 2 – зона лучистого равновесия, 3 – конвективная зона, 4 – фотосфера, 5 – хромосфера, 6 – корона, 7 – пятна, 8 – грануляция, 9 – протуберанец

Внутреннее строение Солнца. Ядро

Центральная часть Солнца с радиусом около 150 000 км (0,2 – 0,25 радиуса Солнца), в которой происходят термоядерные реакции, называется солнечным ядром.

Плотность вещества в ядре составляет примерно 150 000 кг/м³ (в 150 раз выше плотности воды и в ~6,6 раз выше плотности самого тяжёлого металла на Земл - иридия), а температура в центре ядра - более 14 млн. К.

Т.к. наибольшие температуры и плотности должны быть в центральных частях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходят вблизи самого центра Солнца. В ядре наряду с протон-протонной реакцией заметную роль играет углеродный цикл.

В результате только протон-протонной реакции каждую секунду в энергию превращаются 4,26 млн. тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца - 2·1027 тонн. Внутреннее строение Солнца.

Зона лучистого равновесия

По мере удаления от центра Солнца температура и плотность становятся меньше, выделение энергии за счёт углеродного цикла быстро прекращается, и вплоть до расстояния 0,2–0,3 радиуса температура становиться меньше 5 млн. К, также существенно падает плотность. В результате ядерные реакции здесь практически не происходят. Эти слои только передают наружу излучение, возникшее на большей глубине.

Существенно, что вместо каждого поглощенного кванта большой энергии частицы, как правило, излучают несколько квантов меньших энергий в результате последовательных каскадных переходов. Поэтому вместо γ-квантов возникают рентгеновские, вместо рентгеновских - УФ, которые, в свою очередь, уже в наружных слоях «дробятся» на кванты видимого и теплового излучения, окончательно испускаемого Солнцем.

Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии только путём поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия. Она занимает область примерно от 0,3 до 0,7 радиуса Солнца.

Конвективная зона

Выше уровня лучистого равновесия в переносе энергии начинает принимать участие само вещество.

Непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией.

В конвективной зоне возникает вихревое перемешивание плазмы. По современным данным, роль конвективной зоны в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества и магнитные поля.

Строение атмосферы Солнца. Фотосфера

Самые внешние слои Солнца (атмосферу Солнца) принято разделять на фотосферу, хромосферу и корону.

Фотосферой называется та часть солнечной атмосферы, в которой образуется видимое излучение, имеющее непрерывный спектр. Т.о., в фотосфере излучается практически вся приходящая к нам солнечная энергия. Фотосфера видна при непосредственном наблюдении Солнца в белом свете в виде кажущейся его «поверхности».

Толщина фотосферы, т.е. протяжённость слоёв, откуда приходит более 90% излучения в видимом диапазоне, менее 200 км, т.е. около 3·10–4R . Как показывают расчёты, при наблюдении по касательной к таким слоям их видимая толщина уменьшается в несколько раз, вследствие чего вблизи самого края солнечного диска (лимба) наиболее быстрое падение яркости происходит на протяжении менее 10–4R . По этой причине край Солнца кажется исключительно резким. Концентрация частиц в фотосфере составляет 1016–1017 в 1 см3 (в обычных условиях в 1 см3 земной атмосферы содержится 2,7·1019 молекул). Давление в фотосфере около 0,1 атм., а температура фотосферы составляет 5 000 – 7 000 К.

В таких условиях атомы с потенциалами ионизации в несколько вольт (Na, K, Ca) ионизуются. Остальные элементы, в том числе и водород, остаются преимущественно в нейтральном состоянии.

Фотосфера - единственная на Солнце область нейтрального водорода. Однако в результате незначительной ионизации водорода и практически полной ионизации металлов в ней все же имеются свободные электроны. Эти электроны играют исключительно важную роль: соединяясь с нейтральными атомами водорода, они образуют отрицательные ионы водорода Н -

Отрицательные ионы водорода образуются в ничтожном количестве: из 100 млн. водородных атомов в среднем только один превращается в отрицательный ион.

Ионы Н– обладают свойством необычайно сильно поглощать излучение, особенно в ИК и видимой областях спектра. Поэтому, несмотря на свою ничтожную концентрацию, отрицательные ионы водорода являются основной причиной, определяющей поглощение фотосферным веществом излучения в видимой области спектра. Связь второго электрона с атомом очень слабая, и поэтому даже фотоны ИК-диапазона могут разрушить отрицательный ион водорода.

Излучение же происходит при захвате электронов нейтральными атомами. Образующиеся при захвате

фотоны и определяют свечение фотосфер Солнца и звёзд, близких к нему по температуре. Т.о., желтоватый

свет Солнца, который принято называть «белым», возникает при присоединении к атому водорода ещё одного электрона.

Сродство к электрону нейтрального атома H составляет 0,75 эВ. При присоединении к атому Н электрона (е ) с энергией, большей чем 0,75 эВ, её избыток уносится электромагнитным излучением e + H → H– + ħ ω, значительная часть которого попадает в видимый диапазон.

Наблюдения фотосферы позволяют обнаружить её тонкую структуру, напоминающую тесно расположенные кучевые облака. Светлые округлые образования называются гранулами, а вся структура - грануляцией. Угловые размеры гранул в среднем составляют не более 1" дуги, что соответствует 725 км на Солнце. Каждая отдельная гранула существует в среднем 5–10 минут, после чего она распадается, а на её месте возникают

Гранулы окружены темными промежутками, образующими как бы ячейки или соты. Спектральные линии в гранулах и в промежутках между ними смещены соответственно в синюю и красную сторону. Это означает, что в гранулах вещество поднимается, а вокруг них опускается. Скорость этих движений составляет 1–2 км/с.

Грануляция - наблюдаемое в фотосфере проявление конвективной зоны, расположенной под фотосферой. В конвективной зоне происходит активное перемешивание вещества в результате подъема и опускания отдельных масс газа (элементов конвекции). Пройдя путь, примерно равный своим размерам, они как бы растворяются в окружающей среде, порождая новые неоднородности. В наружных, более холодных слоях,

размеры этих неоднородностей меньше

Хромосфера

В наружных слоях фотосферы, где плотность уменьшается до значения 3×10-8 г/см3, температура достигает значений ниже 4 200 К. Это значение температуры оказывается минимальным для всей солнечной атмосферы. В более высоких слоях температура снова начинает возрастать. Сначала происходит медленное возрастание температуры до нескольких десятков тысяч кельвинов, сопровождающееся ионизацией водорода, а затем и гелия. Эта часть солнечной атмосферы называется хромосферой.

Причиной такого сильного разогрева самых внешних слоев солнечной атмосферы является энергия акустических (звуковых) волн, которые, возникают в фотосфере в результате движения элементов конвекции.

В самых верхних слоях конвективной зоны, непосредственно под фотосферой, конвективные движения резко тормозятся и конвекция внезапно прекращается. Т.о., фотосфера снизу постоянно как бы «бомбардируется» конвективными элементами. От этих ударов в ней возникают возмущения, наблюдаемые в виде гранул, а сама она приходит в колебательное движение с периодом, соответствующим частоте собственных колебаний фотосферы (около 5 минут). Эти колебания и возмущения, возникающие в фотосфере, порождают в ней волны, по своей природе близкие к звуковым волнам в воздухе. При распространении вверх, т.е. в слои с меньшей плотностью, эти волны увеличивают свою амплитуду до нескольких километров и превращаются в

ударные волны.

Протяжённость хромосферы составляет несколько тысяч км. Хромосфера имеет эмиссионный спектр, состоящий из ярких линий. Этот спектр очень похож на спектр Солнца, в котором все линии поглощения заменены на линии излучения, а непрерывный спектр почти отсутствует. Однако в спектре хромосферы линии ионизованных элементов сильнее, чем в спектре фотосферы. В частности, в спектре хромосферы очень сильны линии гелия, в то время как в фраунгоферовом спектре они практически не видны. Эти особенности спектра подтверждают рост температуры в хромосфере.

При изучении изображений хромосферы прежде всего обращает на себя внимание её неоднородная структура, значительно резче выраженная, чем грануляция в фотосфере.

Наиболее мелкие структурные образования в хромосфере называются спикулами. Они имеют продолговатую форму, причем вытянуты преимущественно в радиальном направлении. Длина их составляет несколько тысяч км, а толщина - около 1 000 км. Со скоростями в несколько десятков км/с спикулы поднимаются из хромосферы в корону и растворяются в ней.

Через спикулы происходит обмен вещества хромосферы с вышележащей короной.

На Солнце одновременно существуют сотни тысяч спикул.

Спикулы в свою очередь образуют более крупную структуру, называемую хромосферной сеткой, порожденную волновыми движениями, вызванными значительно большими и более глубокими элементами

подфотосферной конвективной зоны, чем гранулы.

Хромосферная сетка лучше всего видна на изображениях в сильных линиях в далёкой УФ области спектра,

например, в резонансной линии 304 Å ионизированного гелия.

Хромосферная сетка состоит из отдельных ячеек размером от 30 до 60 тыс. км.

Корона

В верхних слоях хромосферы, где плотность газа составляет всего 10–15 г/см3, происходит еще одно необычайно резкое увеличение температуры, примерно до миллиона кельвинов. Здесь начинается самая внешняя и наиболее разреженная часть атмосферы Солнца, называемая солнечной короной.

Яркость солнечной короны в миллион раз меньше, чем фотосферы, и не превышает яркости Луны в полнолуние. Поэтому наблюдать солнечную корону можно во время полной фазы солнечных затмений, а вне затмений - с помощью специальных телескопов (коронографов), в которых устраивается искусственное затмение Солнца.

Корона не имеет резких очертаний и обладает неправильной формой, сильно меняющейся со временем. Об этом можно судить, сопоставляя её изображения, полученные во время различных затмений. Наиболее яркую часть короны, удалённую от лимба не более, чем на 0,2-0,3 радиуса Солнца, принято называть внутренней короной, а остальную, весьма протяженную часть, - внешней короной. Важной особенностью короны является её лучистая структура. Лучи бывают различной длины вплоть до десятка и более солнечных радиусов. У основания лучи обычно утолщаются, некоторые из них изгибаются в сторону соседних.

Спектр короны обладает рядом важных особенностей. Основой его является слабый непрерывный фон с распределением энергии, повторяющим распределение энергии в непрерывном спектре Солнца. На фоне этого

непрерывного спектра во внутренней короне наблюдаются яркие эмиссионные линии, интенсивность которых уменьшается по мере удаления от Солнца. Большинство из этих линий не удается получить в лабораторных спектрах. Во внешней короне наблюдаются фраунгоферовы линии солнечного спектра, отличающиеся от фотосферных относительно большей остаточной интенсивностью.

Излучение короны поляризовано, причем на расстоянии около 0,5 R от края Солнца поляризация увеличивается примерно до 50%, а на больших расстояниях - снова уменьшается.__

Излучение короны является рассеянным светом фотосферы, а поляризованность этого излучения позволяет установить природу частиц, на которых происходит рассеяние – это свободные электроны.

Появление этих свободных электронов может быть вызвано только ионизацией вещества. Однако в целом ионизованный газ (плазма) должен быть нейтрален. Следовательно, концентрация ионов в короне также должна соответствовать концентрации электронов.

Эмиссионные линии солнечной короны принадлежат обычным химическим элементам, но находящимся в очень высоких стадиях ионизации. Наиболее интенсивная - зеленая корональная линия с длиной волны 5303 Å - испускается ионом Fe XIV, т.е. атомом железа, лишенным 13 электронов. Другая интенсивная - красная корональная линия (6 374 Å) - принадлежит атомам девятикратно ионизованного железа Fe X. Остальные эмиссионные линии отождествлены с ионами Fe XI, Fe XIII, Ni XIII, Ni XV, Ni XVI, Са XII, Са XV, Ar X и др.

Т.о., солнечная корона представляет собой разреженную плазму с температурой около миллиона кельвинов.

Зодиакальный свет и противосияние

Свечение, аналогичное «ложной короне», можно наблюдать и на больших расстояниях от Солнца в

виде зодиакального света.

Зодиакальный свет наблюдается в тёмные безлунные ночи весной и осенью в южных широтах вскоре

после захода или незадолго перед восходом Солнца. В это время эклиптика высоко поднимается над горизонтом, и становится заметной проходящая вдоль неё светлая полоса. По мере приближения к Солнцу, находящемуся под горизонтом, свечение усиливается, а полоса расширяется, образуя треугольник. Яркость его постепенно падает с увеличением расстояния от Солнца.

В области неба, противоположной Солнцу, яркость зодиакального света слегка возрастает, образуя эллиптическое туманное пятно диаметром около 10º, которое называется противосиянием. Противосияние

обусловлено отражением солнечного света от космической пыли.

Солнечный ветер

Солнечная корона имеет динамическое продолжение далеко за орбиту Земли до расстояний порядка 100 а.е.

Из солнечной короны происходит постоянное истекание плазмы со скоростью, постепенно увеличивающейся по мере удаления от Солнца. Это расширение солнечной короны в межпланетное пространство называется солнечным ветром.

Из-за солнечного ветра Солнце теряет ежесекундно около 1 млн. Тонн вещества. Солнечный ветер состоит в основном из электронов, протонов и ядер гелия (альфа-частиц); ядра других элементов и нейтральных частиц содержатся в очень незначительном количестве.

Часто путают солнечный ветер (поток частиц – протонов, электронов и т.п.) с эффектом давления солнечного света (поток фотонов). Давление солнечного света в настоящее время в несколько тысяч раз превышает давление солнечного ветра. Хвосты комет, всегда направленные в противоположную сторону от Солнца, также образуются за счёт давления света, а не за счёт солнечного ветра.

38. Активные образования в солнечной атмосфере: пятна, факелы, флоккулы, хромосферные вспышки, протуберанцы. Цикличность солнечной активности.

Активные образования в солнечной атмосфере

Временами в солнечной атмосфере возникают быстро меняющиеся активные образования, резко отличающиеся от окружающих невозмущенных областей, свойства и структура которых совсем или почти совсем не меняются со временем. В фотосфере, хромосфере и короне проявления солнечной активности весьма различны. Однако все они связаны общей причиной. Такой причиной является магнитное поле, всегда

присутствующее в активных областях.

Происхождение и причина изменений магнитных полей на Солнце до конца не выяснены. Магнитные поля могут быть сконцентрированы в каком-либо слое Солнца (например, у о снования конвективной зоны), а периодические усиления магнитных полей могут быть обусловлены дополнительными возбуждениями токов в солнечной плазме.

Наиболее распространёнными проявлениями солнечной активности являются пятна, факелы, флоккулы, протуберанцы.

Солнечные пятна

Наиболее известным проявлением солнечной активности являются солнечные пятна, возникающие, как правило, целыми группами.

Солнечное пятно появляется в виде крошечной поры, едва отличающейся от тёмных промежутков между гранулами. Через день пора развивается в круглое тёмное пятно с резкой границей, диаметр которого постепенно увеличивается вплоть до размеров в несколько десятков тысяч км. Это явление сопровождается плавным увеличением напряжённости магнитного поля, которое в центре крупных пятен достигает нескольких тысяч эрстед. Величину магнитного поля определяют по зеемановскому расщеплению спектральных линий.

Иногда возникает несколько мелких пятен в пределах небольшой области, вытянутой параллельно экватору, - группа пятен. Отдельные пятна преимущественно появляются на западном и восточном краях области, где сильнее других развиваются дна пятна - ведущее (западное) и хвостовое (восточное). Магнитные поля обоих главных пятен и примыкающих к ним мелких всегда обладают противоположной полярностью, и поэтому такую группу пятен называют биполярной

Через 3-4 дня после появления больших пятен вокруг них возникает менее тёмная полутень, имеющая характерную радиальную структуру. Полутень окружает центральную часть пятна, называемую тенью.

С течением времени площадь, занимаемая группой пятен, постепенно возрастает, достигая наибольшей

величины примерно на десятый день. После этого пятна начинают постепенно уменьшаться и исчезать, сначала наиболее мелкие из них, затем хвостовое (предварительно распавшись на несколько пятен), наконец, ведущее.

В целом весь этот процесс длится около двух месяцев, однако многие группы солнечных пятен не успевают

пройти всех описанных стадий и исчезают раньше.

Центральная часть пятна только кажется чёрной из-за большой яркости фотосферы. На самом деле, в центре

пятна яркость меньше только на порядок, а яркость полутени составляет примерно 3/4 от яркости фотосферы. На основании закона Стефана - Больцмана это означает, что температура в пятне на 2–2,5 тыс. К меньше, чем в фотосфере.

Понижение температуры в пятне объясняется влиянием магнитного поля на конвекцию. Сильное магнитное поле тормозит движения вещества, происходящие поперек силовых линий. Поэтому в конвективной зоне под пятном ослабляется циркуляция газов, которая переносит из глубины наружу существенную часть энергии. В результате температура пятна оказывается меньше, чем в невозмущенной фотосфере.

Большая концентрация магнитного поля в тени ведущего и хвостового пятна наводит на мысль, что основная часть магнитного потока активной области на Солнце заключена в гигантской трубке силовых линий, выходящих из тени пятна северной полярности и входящей обратно в пятно южной полярности.

Однако из-за большой проводимости солнечной плазмы и явления самоиндукции магнитные поля напряжённостью в несколько тысяч эрстед не могут ни возникнуть, ни исчезнуть за несколько дней, соответствующих времени появления и распада группы пятен.

Т.о., можно предположить, что магнитные трубки находятся где-то в конвективной зоне, а возникновение групп солнечных пятен связано с всплыванием таких трубок.

Факелы

В невозмущенных областях фотосферы имеется лишь общее магнитное поле Солнца, напряженность которого составляет около 1 Э. В активных областях напряженность магнитного поля увеличивается в сотни и даже тысячи раз.

Небольшое усиление магнитного поля до десятков и сотен Э сопровождается появлением в фотосфере более яркой области, называемой факелом. В общей сложности факелы могут занимать значительную долю всей видимой поверхности Солнца. Они отличаются характерной тонкой структурой и состоят из многочисленных прожилок, ярких точек и узелков - факельных гранул.

Лучше всего факелы видны на краю солнечного диска (здесь их контраст с фотосферой составляет около 10%), в то время как в центре они почти совсем не видны. Это означает, что на некотором уровне в фотосфере факел горячее соседней невозмущенной области на 200–300 К и в целом слегка выступает над уровнем

невозмущённой фотосферы.

Возникновение факела связано с важным свойством магнитного поля - препятствовать движению ионизованного вещества, происходящему поперек силовых линий. Если магнитное поле обладает достаточно большой энергией, то оно «допускает» движение вещества только вдоль силовых линий.

Слабое магнитное поле в области факела не может остановить сравнительно мощных конвективных движений. Однако оно может придать им более правильный характер. Обычно каждый элемент конвекции, помимо общего подъема или опускания по вертикали, совершает небольшие беспорядочные движения в горизонтальной плоскости. Эти движения, приводящие к возникновению трения между отдельными элементами конвекции, тормозятся магнитным полем, имеющимся в области факела, что облегчает конвекцию и позволяет горячим газам подняться на большую высоту и перенести больший поток энергии. Т.о., появление факела связано с усилением конвекции, вызванным слабым магнитным полем.

Факелы - относительно устойчивые образования. Они без особых изменений могут существовать в течение нескольких недель и даже месяцев.

Флоккулы

Хромосфера над пятнами и факелами увеличивает свою яркость, причем контраст между возмущённой и невозмущённой хромосферой растет с высотой. Эти более яркие области хромосферы называются флоккулами. Увеличение яркости флоккула по сравнению с окружающей невозмущенной хромосферой не дает оснований для определения его температуры, так как в разряженной и весьма прозрачной для непрерывного спектра хромосфере связь между температурой и излучением не подчиняется законам Планка и Стефана–Больцмана.

Повышение яркости флоккула в центральных частях можно объяснить увеличением плотности вещества в хромосфере в 3–5 раза при почти неизменном значении температуры, или при слабом ее увеличении. Солнечные вспышки

В хромосфере и короне, чаще всего в небольшой области между развивающимися пятнами, особенно вблизи границы раздела полярности сильных магнитных полей, наблюдаются самые мощные и быстро развивающиеся проявления солнечной активности, называемые солнечными вспышками.

В начале вспышки яркость одного из светлых узелков флоккула внезапно подрастает. Часто менее, чем за минуту сильное излучение распространяется вдоль длинного жгута или заливает целую область протяженностью в десятки тысяч км.

В видимой области спектра усиление свечения происходит главным образом в спектральных линиях водорода, ионизованного кальция и других металлов. Уровень непрерывного спектра также возрастает, иногда настолько сильно, что вспышка становится заметной в белом свете на фоне фотосферы. Одновременно с видимым излучением сильно возрастает интенсивность УФ и рентгеновского излучения, а также мощность солнечного радиоизлучения.

Во время вспышек наблюдаются самые коротковолновые (т.е. наиболее «жёсткие») рентгеновские спектральные линии и даже в некоторых случаях γ-излучение. Всплеск всех этих видов излучения происходит за несколько минут. После достижения максимума уровень излучения постепенно ослабевает в течение нескольких десятков минут.

Все перечисленные явления объясняются выделением большого количества энергии неустойчивой плазмы, находящейся в области очень неоднородного магнитного поля. В результате взаимодействия магнитного поля и плазмы значительная часть энергии магнитного поля переходит в тепло, нагревая газ до температуры в десятки миллионов кельвинов, а также идет на ускорение облаков плазмы.

Одновременно с ускорением макроскопических облаков плазмы относительные движения плазмы и магнитных полей приводят к ускорению отдельных частиц до высоких энергий: электронов до десятков кэВ и протонов до десятков МэВ.

Поток таких солнечных частиц оказывает существенное воздействие на верхние слои атмосферы Земли и её магнитное поле.

Протуберанцы

Активными образованиями, наблюдаемыми в короне, являются протуберанцы. По сравнению с окружающей их плазмой это более плотные и «холодные» облака, светящиеся примерно в тех же спектральных линиях, что и хромосфера.

Протуберанцы бывают весьма различных форм и размеров. Чаще всего это длинные, очень плоские образования, расположенные почти перпендикулярно к поверхности Солнца. Поэтому в проекции на солнечный диск протуберанцы выглядят в виде изогнутых волокон.

Протуберанцы - наиболее грандиозные образования в солнечной атмосфере, их длина достигает сотен тысяч км, хотя ширина не превышает 6 000–10 000 км. Нижние их части сливаются с хромосферой, а верхние простираются на десятки тысяч км. Однако встречаются протуберанцы и значительно больших размеров.

Через протуберанцы постоянно происходит обмен вещества хромосферы и короны. Об этом свидетельствуют часто наблюдаемые движения как самих протуберанцев, так и отдельных их частей, происходящие со скоростями в десятки и сотни км/с.

Возникновение, развитие и движение протуберанцев тесно связано с эволюцией групп солнечных пятен. На первых стадиях развития активной области пятен образуются короткоживущие и быстро меняющиеся

протуберанцы вблизи пятен. На более поздних стадиях возникают устойчивые спокойные протуберанцы, существующие без заметных изменений в течение нескольких недель, и даже месяцев, после чего внезапно может наступить стадия активизации протуберанца, проявляющаяся в возникновении сильных движений, выбросов вещества в корону и появлении быстро движущихся эруптивных протуберанцев.

Эруптивные, или изверженные – по виду напоминают громадные фонтаны, достигающие высот до 1,7 млн. км над поверхностью Солнца. Движения сгустков вещества в них происходят быстро; извергаются со скоростями в сотни км/с и довольно быстро изменяют свои очертания. При увеличении высоты протуберанец слабеет и рассеивается. В некоторых протуберанцах наблюдались резкие изменения скорости движения отдельных сгустков. Эруптивные протуберанцы непродолжительны.

Солнечная активность

Все рассмотренные активные образования в солнечной атмосфере тесно связаны между собой.

Возникновение факелов и флоккулов всегда предшествует появлению пятен.

Вспышки возникают во время наиболее быстрого роста группы пятен или в результате происходящих в них сильных изменений.

В это же время возникают протуберанцы, которые часто продолжают долгое время существовать после распада активной области.

Совокупность всех проявлений солнечной активности, связанных с данным участком атмосферы и развивающихся в течение определенного времени, называется центром солнечной активности.

Количество пятен и других связанных с ними проявлений солнечной активности периодически меняется. Эпоха, когда количество центров активности наибольшее, называется максимумом солнечной активности, а когда их совсем или почти совсем нет, - минимумом.

В качестве меры степени солнечной активности пользуются т.н. числами Вольфа, пропорциональными сумме общего числа пятен f и удесятеренного числа их групп g : W = k (f + 10g ).

Коэффициент пропорциональности k зависит от мощности применяемого инструмента. Обычно числа Вольфа усредняют (например, по месяцам или годам) и строят график зависимости солнечной активности от

Кривая солнечной активности демонстрирует, что максимумы и минимумы чередуются в среднем через каждые 11 лет, хотя промежутки времени между отдельными последовательными максимумами могут

колебаться в пределах от 7 до 17 лет.

В эпоху минимума в течение некоторого времени пятен на Солнце, как правило, совсем нет. Затем они начинают появляться далеко от экватора, примерно на широтах ±35°. В дальнейшем зона пятнообразования постепенно спускается к экватору. Однако в областях, удаленных от экватора меньше чем на 8°, пятна бывают очень редко.

Важной особенностью цикла солнечной активности является закон изменения магнитной полярности пятен. В течение каждого 11-летнего цикла все ведущие пятна биполярных групп имеют некоторую полярность в северном полушарии и противоположную в южном. То же самое справедливо для хвостовых пятен, у которых полярность всегда противоположна полярности ведущего пятна. В следующем цикле полярность ведущих и хвостовых пятен меняется на противоположную. Одновременно с этим меняется полярность и общего магнитного поля Солнца, полюсы которого находятся вблизи полюсов вращения.

Одиннадцатилетней цикличностью обладают и многие другие характеристики: доля площади Солнца, занятая факелами и флоккулами, частота вспышек, количество протуберанцев, а также форма короны и

мощность солнечного ветра.

Цикличность солнечной активности – одна из важнейших проблем современной физики Солнца, до конца ещё не решённая.

Чтобы познакомиться с внутренним строением Солнца, совершим сейчас воображаемое путешествие из центра светила к его поверхности. Но как мы будем определять температуру и плотность солнечного шара на различных глубинах? Как сможем узнать, какие процессы совершаются внутри Солнца?

Оказывается, большинство физических параметров звезд (наше Солнце тоже звезда!) не измеряются, а рассчитываются теоретически с помощью компьютеров. Исходными для таких вычислений служат лишь некоторые общие характеристики звезды, например ее масса, радиус, а также физические условия, господствующие на ее поверхности: температура, протяженность и плотность атмосферы и тому подобное. Химический состав звезды (в частности, Солнца) определяется спектральным путем. И вот на основании этих данных астрофизик-теоретик создаст математическую модель Солнца. Если такая модель соответствует результатам наблюдений, то ее можно считать достаточно хорошим приближением к действительности. А мы, опираясь на такую модель, постараемся представить себе всю экзотику глубин вели кого светила.

Центральная часть Солнца называется его ядром. Вещество внутри солнечного ядра чрезвычайно сжато. Его радиус равен примерно 1/4 радиуса Солнца, а объем составляет 1/45 часть (немногим более 2%) от полного объема Солнца. Тем не менее в ядре светила упакована почти половина солнечной массы. Это стало возможно благодаря очень высокой степени ионизации солнечного вещества. Условия там точно такие, какие нужны для работы термоядерного реактора, Ядро представляет собой гигантскую управляемую силовую станцию, где рождается солнечная энергия.

Переместившись из центра Солнца примерно на 1/4 его радиуса, мы вступаем в так называемую зону переноса энергии излучением. Эту самую протяженную внутреннюю область Солнца можно представить себе наподобие стенок ядерного котла, через которые солнечная энергия медленно просачивается наружу. Но чем ближе к поверхности Солнца, тем меньше температура и давление. В результате возникает вихревое перемешивание вещества и перенос энергии совершается преимущественно самим веществом. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца, где она происходит,— конвективной зоной. Исследователи Солнца считают, что ее роль в физике солнечных процессов исключительно велика. Ведь именно здесь зарождаются разнообразные движения солнечного вещества и магнитные поля.

Наконец мы у видимой поверхности Солнца. Поскольку наше Солнце — звезда, раскаленный плазменный шар, у него, в отличие от Земли, Луны, Марса и им подобных планет, не может быть настоящей поверхности, понимаемой в полном смысле этого слова. И если мы говорим о поверхности Солнца, то это понятие условное.

Видимая светящаяся поверхность Солнца, расположенная непосредственно над конвективной зоной, называется фотосферой, что в переводе с греческого означает «сфера света».

Фотосфера — это 300-километровый слой. Именно отсюда приходит к нам солнечное излучение. И когда мы смотрим на Солнце с Земли, то фотосфера является как раз тем слоем, который пронизывает наше зрение. Излучение же из более глубоких слоев к нам уже не доходит, и увидеть их невозможно.

Температура в фотосфере растет с глубиной и в среднем оценивается в 5800 К.

Из фотосферы исходит основная часть оптического (видимого) излучения Солнца. Здесь средняя плотность газа составляет менее 1/1000 плотности воздуха, которым мы дышим, а температура по мере приближения к внешнему краю фотосферы уменьшается до 4800 К. Водород при таких условиях сохраняется почти полностью в нейтральном состоянии.

Астрофизики за поверхность великого светила принимают основание фотосферы. Саму же фотосферу они считают самым нижним (внутренним) слоем солнечной атмосферы. Над ним расположено еще два слоя, которые образуют внешние слои солнечной атмосферы,— хромосфера и корона. И хотя резких границ между этими тремя слоями не существует, познакомимся с их главными отличительными признаками.

Желто-белый свет фотосферы обладает непрерывным спектром, то есть имеет вид сплошной радужной полоски с постепенным переходом цветов от красного к фиолетовому. Но в нижних слоях разреженной хромосферы, в области так называемого температурного минимума, где температура опускается до 4200 К, солнечный свет испытывает поглощение, благодаря которому в спектре Солнца образуются узкие линии поглощения. Их называют фраунгоферовыми линиями, по имени немецкого оптика Иозефа Фрау и гофера, который в 1816 году тщательно измерил длины волн 754 линии.

На сегодняшний день в спектре Солнца зарегистрировано свыше 26 тыс. темных линий различной интенсивности, возникающих из-за поглощения света «холодными» атомами. И поскольку каждый химический элемент имеет свой характерный набор линий поглощения, это дает возможность определить его присутствие во внешних слоях солнечной атмосферы.

Химический состав атмосферы Солнца подобен составу большинства звезд, образовавшихся в течение нескольких последних миллиардов лет (их называют звездами второго поколения). По сравнению со старыми небесными светилами (звездами первого поколения) они содержат в десятки раз больше тяжелых элементов, то есть элементов, которые тяжелее гелия. Астрофизики считают, что тяжелые элементы впервые появились в результате ядерных реакций, протекавших при взрывах звезд, а возможно, даже во время взрывов галактик. В период образования Солнца межзвездная среда уже была достаточно хорошо обогащена тяжелыми элементами (само Солнце еще не производит элементы тяжелее гелия). Но паша Земля и другие планеты конденсировались, видимо, из того же газопылевого облака, что и Солнце. Поэтому не исключено, что, изучая химический состав нашего дневного светила, мы изучаем также состав первичного протопланетного вещества.

Поскольку температура в солнечной атмосфере меняется с высотой, на разных уровнях линии поглощения создаются атомами различных химических элементов. Это позволяет изучать различные атмосферные слои великого светила и определять их протяженность.

Над фотосферой расположен более разреженный слог! атмосферы Солнца, который называется хромосферой, что означает «окрашенная сфера». Ее яркость во много раз меньше яркости фотосферы, поэтому хромосфера бывает видна только в короткие минуты полных солнечных затмений, как розовое кольцо вокруг темного диска Луны. Красноватый цвет хромосфере придает излучение водорода. У этого газа наиболее интенсивная спектральная линия — На— находится в красной области спектра, а водорода в хромосфере особенно много.

По спектрам, полученным во время солнечных затмений, видно, что красная линия водорода исчезает на высоте примерно 12 тыс. км над фотосферой, а липни ионизованного кальция перестают быть видимыми на высоте 14 тыс. км. Вот эта высота и рассматривается как верхняя граница хромосферы. По мере подъема растет температура, достигая в верхних слоях хромосферы 50 000 К. С возрастанием температуры усиливается ионизация водорода, а затем и гелия.

Повышение температуры в хромосфере вполне объяснимо. Как известно, плотность солнечной атмосферы быстро убывает с высотой, а разреженная среда излучает энергии меньше, чем плотная. Поэтому поступающая от Солнца энергия разогревает верхнюю хромосферу и лежащую над ней корону.

В настоящее время гелиофизики с помощью специальных приборов наблюдают хромосферу не только во время солнечных затмений, но и в любой ясный день. Во время полных солнечных затмений можно увидеть самую внешнюю оболочку солнечной атмосферы — корону — нежное жемчужно-серебристое сияние, простирающееся вокруг затмившегося Солнца. Общая яркость короны составляет примерно одну миллионную долю света Солнца или половину света полной Луны.

Солнечная корона представляет собой сильно разреженную плазму с температурой, близкой к 2 млн К. Плотность коронального вещества в сотни миллиардов раз меньше плотности воздуха у поверхности Земли. В подобных условиях атомы химических элементов не могут находиться в нейтральном состоянии: их скорость настолько велика, что при взаимных столкновениях они теряют практически все свои электроны и многократно ионизуются. Вот почему солнечная корона состоит в основном из протонов (ядер атомов водорода), ядер гелия и свободных электронов.

Исключительно высокая температура короны приводит к тому, что ее вещество становится мощным источником ультрафиолетового и рентгеновского излучений. Для наблюдений в этих диапазонах электромагнитного спектра используются, как известно, специальные ультрафиолетовые и рентгеновские телескопы, установленные на космических аппаратах и орбитальных научных станциях.

С помощью радиометодов (солнечная корона интенсивно излучает дециметровые и метровые радиоволны) корональные лучи «просматриваются» до расстояний в 30 солнечных радиусов от края солнечного диска. С удалением от Солнца плотность короны очень медленно уменьшается, и самый верхний ее слой вытекает в космическое пространство. Так образуется солнечным ветер.

Только за счет улетучивания корпускул масса Солнца ежесекундно уменьшается не менее чем на 400 тыс. т.

Солнечный ветер обдувает все пространство нашей планетной системы. К го начальная скорость достигает более 1000 км/с, но потом она медленно уменьшается. У орбиты Земли средняя скорость ветра около 400 км/с. Ом сметает па своем пути все газы, выделяемые планетами и кометами, мельчайшие метеорные пылинки и даже частицы галактических космических лучей малых энергий, унося весь этот «мусор» к окраинам планетной системы. Образно говоря, мы как бы купаемся в короне великого светила...

солнце активность фотосфера ветер

Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца. Её толщина соответствует оптической толщине приблизительно в 2/3 единиц. В абсолютных величинах фотосфера достигает толщины, по разным оценкам, от 100 до 400 км. Из фотосферы исходит основная часть оптического (видимого) излучения Солнца, излучение же из более глубоких слоёв до неё уже не доходит. Температура по мере приближения к внешнему краю фотосферы уменьшается с 6600 К до 4400 К. Эффективная температура фотосферы в целом составляет 5778 К. Она может быть рассчитана по закону Стефана -- Больцмана, согласно которому мощность излучения абсолютно чёрного тела прямо пропорциональна четвёртой степени температуры тела.

Хромосфера (от др.-греч. чспмб -- цвет, уцбЯсб -- шар, сфера) -- внешняя оболочка Солнца толщиной около 2000 км, окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом, вызванным тем, что в видимом спектре хромосферы доминирует красная H-альфа линия излучения водорода из серии Бальмера. Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из неё постоянно происходят горячие выбросы, называемые спикулами. Число спикул, наблюдаемых одновременно, составляет в среднем 60--70 тыс. Из-за этого в конце XIX века итальянский астроном Секки, наблюдая хромосферу в телескоп, сравнил её с горящими прериями. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К (область температур больше 10 000 К относительно невелика).

Плотность хромосферы невелика, поэтому яркость недостаточна для наблюдения в обычных условиях. Но при полном солнечном затмении, когда Луна закрывает яркую фотосферу, расположенная над ней хромосфера становится видимой и светится красным цветом. Её можно также наблюдать в любое время с помощью специальных узкополосных оптических фильтров. Кроме уже упомянутой линии H-альфа с длиной волны 656,3 нм, фильтр также может быть настроен на линии Ca II K (393,4 нм) и Ca II H (396,8 нм).

Корона -- последняя внешняя оболочка Солнца. Корона в основном состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер. Средняя корональная температура составляет от 1 000 000 до 2 000 000 К, а максимальная, в отдельных участках, -- от 8 000 000 до 20 000 000 К. Несмотря на такую высокую температуру, она видна невооружённым глазом только во время полного солнечного затмения, так как плотность вещества в короне мала, а потому невелика и её яркость. Необычайно интенсивный нагрев этого слоя вызван, по-видимому, эффект магнитного присоединения и воздействием ударных волн. Форма короны меняется в зависимости от фазы цикла солнечной активности: в периоды максимальной активности она имеет округлую форму, а в минимуме -- вытянута вдоль солнечного экватора. Поскольку температура короны очень велика, она интенсивно излучает в ультрафиолетовом и рентгеновском диапазонах. Эти излучения не проходят сквозь земную атмосферу, но в последнее время появилась возможность изучать их с помощью космических аппаратов. Излучение в разных областях короны происходит неравномерно. Существуют горячие активные и спокойные области, а также корональные дыры с относительно невысокой температурой в 600 000 К, из которых в пространство выходят магнитные силовые линии. Такая («открытая») магнитная конфигурация позволяет частицам беспрепятственно покидать Солнце, поэтому солнечный ветер испускается в основном из корональных дыр.

Солнечный ветер. Из внешней части солнечной короны истекает солнечный ветер -- поток ионизированных частиц (в основном протонов, электронов и б-частиц), распространяющийся с постепенным уменьшением своей плотности, до границ гелиосферы. Солнечный ветер разделяют на два компонента -- медленный солнечный ветер и быстрый солнечный ветер. Медленный солнечный ветер имеет скорость около 400 км/с и температуру 1,4 --1,6·10 6 К и по составу близко соответствует короне. Быстрый солнечный ветер имеет скорость около 750 км/с, температуру 8·10 5 К, и по составу похож на вещество фотосферы. Медленный солнечный ветер вдвое более плотный и менее постоянный, чем быстрый. Медленный солнечный ветер имеет более сложную структуру с регионами турбулентности.

Наблюдения и теории позволяют построить следующую модель Солнца (рис. 5.3).

Самый внутренний слой называется солнечным ядром . В этом слое вблизи центра Солнца температура достигает 15 млн К , давление - сотни миллиардов атмосфер, а плотность вещества составляет около 150 г/см 3 . В этих условиях отдельные атомы движутся с огромными скоростями, достигающими, например, для водорода, сотен километров в секунду. Поскольку плотность вещества очень велика, весьма часто происходят атомные столкновения. Некоторые из таких столкновений приводят к тесным сближениям атомных ядер, необходимым для возникновения ядерных реакций .

Рис. 5.3. Схематический разрез Солнца и его атмосферы.

В недрах Солнца существенную роль играют две ядерные реакции. В результате одной из них, схематически изображенной на рис. 5.4, из четырех атомов водорода образуется один атом гелия. На промежуточных стадиях реакции образуются ядра тяжелого водорода (дейтерия) и ядра изотопаНе 3 . Эта реакция называется протон-протонной.

Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит названия углеродного цикла.

При обычных столкновениях сближению одинаково заряженных частиц препятствует электростатическое отталкивание (кулоновский барьер). Именно для его преодоления частицы должны иметь огромные энергии, т.е. температура вещества должна быть очень высокой. Поэтому описанные ядерные реакции называют термоядерными . Термоядерные реакции являются источником энергии, излучаемой Солнцем в мировое пространство.

Так как наибольшие температуры и давление создаются в самых глубоких слоях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходит в самом центре Солнца. Только здесь наряду с протон-протонной реакцией большую роль играет углеродный цикл. По мере удаления от центра Солнца температура и давление становятся меньше, выделение энергии за счет углеродного цикла быстро прекращается и вплоть до расстояния около 0,2-0,3

Рис. 5.4. Схема основного варианта протон-протонной реакции: 6 H 1 ® 2 D 2 + 2 H 1 ® 2 He 3 ® He 4 + 2 H 1 ; здесь H 1 - протон, D 2 - ядро дейтерия, He 3 и He 4 - изотопы гелия, e + - позитрон, n - нейтрино.

радиуса от центра существенной остается только протон-протонная реакция. На расстоянии от центра больше 0,3 радиуса температура становится меньше 5 млн К , существенно падает и плотность. В этих условиях ядерные реакции практически не происходят. Эти слои только передают наружу излучение, выделившееся на большей глубине в виде гамма-квантов, которые поглощаются и переизлучаются отдельными атомами.



Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии путем поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия или зоной лучистой передачи энергии . Она занимает область примерно от 0,3 до 0,7 r ¤ от центра Солнца. Выше этого уровня в переносе энергии

начинает принимать участие само вещество, и непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона , в которой энергия переносится конвекцией.

Наконец, самые внешние слои Солнца, излучение которых можно наблюдать, называются солнечной атмосферой ;в основном она состоит из трех слоев, называемых фотосферой, хромосферой и короной.

Фотосферой называются те слои солнечной атмосферы, в которых образуется видимое излучение, имеющее непрерывный спектр. Таким образом, она излучает практически всю приходящую к нам солнечную энергию. Фотосфера видна при непосредственном наблюдении Солнца в белом свете в виде кажущейся его поверхности. Первое, что бросается в глаза во время таких наблюдений, - плавное потемнение солнечного диска к краю.

Толщина фотосферы составляет около 300 км . Плотность вещества на нижней границе фотосферы 5∙10 –7 г/см 3 , тогда как на верхней границе она в тысячу раз меньше.

На поверхности Солнца можно разглядеть много деталей. Вся фотосфера Солнца состоит из светлых зернышек, пузырьков. Эти зернышки называются гранулами . Размеры гранул невелики, 1000–2000 км , расстояние между ними - 300–600 км . На Солнце наблюдается одновременно около миллиона гранул. Каждая гранула существует несколько минут. Гранулы окружены темными промежутками, как бы сотами. В гранулах вещество поднимается, а вокруг них – опускается. Грануляция - проявление конвекции в более глубоких слоях Солнца.

Гранулы создают общий фон, на котором можно наблюдать несравненно более масштабные образования, такие, как факелы и солнечные пятна .

Впервые пятна на Солнце в телескоп наблюдал Галилей в 1610 году. Пятна на Солнце- очевидный признак его активности (рис. 5.5). Это более холодные области фотосферы. Температура пятен около 3500 К, поэтому на ярком фоне фотосферы (с температурой около 6000 К) они кажутся темнее. Образование пятен связано с магнитным полем Солнца. Небольшие пятна имеют в поперечнике несколько тысяч километров. Размеры крупных пятен достигают 100 000 км; такие пятна существуют около месяца. Солнечные пятна имеют внутреннюю структуру: более темную центральную часть - ядро - и окружающую ее полутень . Солнечные пятна часто образуют группы, которые могут занимать значительную площадь на солнечном диске.

Пятна на Солнце часто бывают окружены светлыми зонами, называемыми факелами . Они горячее атмосферы примерно на 2000 К и имеют ячеистую структуру (величина каждой ячейки – около 30 тысяч километров). Часто встречаются факельные поля, внутри которых пятен нет.

Хромосфера Солнца (рис. 5.6) видна только в моменты полных солнечных затмений. Луна полностью закрывает фотосферу, и хромосфера вспыхивает, как небольшое кольцо ярко-красного цвета, окруженное жемчужно-белой короной. Хромосфера получила свое название именно из-за этого явления (греч. «окрашенная сфера»).

Размеры хромосферы 10–15 тысяч километров, а плотность вещества в сотни тысяч раз меньше,

чем в фотосфере. Температура в хромосфере быстро растет, достигая в верхних ее слоях десятков тысяч градусов. Рост температуры объясняется воздействием магнитных полей и волн, проникающих в хромосферу из зоны конвективных движений. Здесь нагрев происходит, как в микроволновой печи, только гигантских размеров.

На краю хромосферы наблюдаются выступающие язычки пламени – хромосферные спикулы , представляющие собою вытянутые столбики из уплотненного газа. Температура этих струй выше, чем температура фотосферы.

Часто, особенно когда на Солнце имеются большие группы пятен, в хромосфере возникают вспышки . Они похожи на огромные взрывы, длящиеся всего лишь несколько минут. За несколько минут в маленькой области высвобождается энергия порядка 100 000 миллиардов кВт/час : столько же тепла поступает от Солнца на Землю в год! При этом излучение резко возрастает не только в видимой области спектра, но и в ультрафиолете, и в рентгеновской области спектра, увеличивается поток космических лучей. Вспышки вызывают изменения в магнитном поле Земли и могут даже повредить системы электроснабжения. Причины вспышек пока еще плохо изучены; по-видимому, они вызываются резким изменением магнитного поля в хромосфере.

Самая внешняя, самая разреженная и самая горячая часть солнечной атмосферы ¾ корона . Она прослеживается от солнечного лимба до расстояний в десятки солнечных радиусов. Несмотря на сильное гравитационное поле Солнца, это возможно благодаря огромным скоростям движения частиц, составляющих корону. Корона имеет температуру около миллиона градусов и состоит из высокоионизированного газа. Возможно, причиной такой высокой температуры являются поверхностные выбросы солнечного вещества в виде петель и арок. Миллионы колоссальных фонтанов переносят в корону вещество, нагретое в глубинных слоях Солнца.

Яркость короны в миллионы раз меньше, чем фотосферы, поэтому корону можно видеть только во время полного солнечного затмения, либо с помощью коронографа. Наиболее яркую ее часть принято называть внутренней короной . Она удалена от поверхности Солнца на расстояние не более одного радиуса. Внешняя корона Солнца имеет протяженные границы.

Важной особенностью короны является ее лучистая структура. Корональные лучи имеют самую разнообразную форму (рис. 5.7). В эпоху минимума солнечной активности корона имеет округлую форму, она как бы «причесана». В эпоху максимума корональные лучи раскинуты во все стороны.

Наиболее грандиозными солнечными образованиями являются протуберанцы ¾ выбросы солнечного вещества. Плотность и температура протуберанцев такая же, как и вещества хромосферы, но на фоне горячей короны протуберанцы – холодные и плотные образования. Температура протуберанцев около 20 000 К. Некоторые из них существуют в короне несколько месяцев, другие, появляющиеся рядом с пятнами, быстро движутся со скоростями около 100 км/с и существуют несколько недель. Размеры протуберанцев могут быть разными. Типичный протуберанец имеет высоту около 40 000 км и ширину около 200 000 км. Зарегистрированы и рекордсмены среди протуберанцев, их размеры превышали 3 000 000 км.

После семнадцатилетних наблюдений Генрих Швабе установил, что количество пятен на Солнце с течением времени меняется. В годы минимума пятен на поверхности Солнца может не быть совсем, в годы максимума их число измеряется десятками. Максимумы и минимумы чередуются в среднем каждые 11 лет (от 7 до 17 лет), последний максимум солнечной активности был в 2000 году. Возможно, существуют и более длительные циклы солнечной активности . В начале ХХ века Д. Хейл обнаружил, что магнитные полярности первых, ведущих, пятен и хвостовых пятен в северном и южном полушариях Солнца противоположны и меняются полюсами в каждом новом цикле. Поэтому полный цикл солнечной активности происходит в течение 22 лет.

Цикл активности солнечных пятен имеет прямое отношение к земному климату. У некоторых деревьев толщина колец имеет одиннадцатилетний цикл. В конце XVII – начале XVIII века, когда пятен практически не было, в Европе стояла очень холодная погода.

В начале XX века Александр Чижевский после многолетних статистических исследований доказал зависимость количества событий в общественной жизни на Земле от активности Солнца. Выяснилось, что в годы максимумов солнечной активности на Земле увеличивается количество революций и войн, усиливается политическая активность населения. Максимумы солнечной активности также провоцируют развитие многих болезней: в частности, усиливается вероятность эпидемий.