Конспект урока по математике: "Правила нахождения первообразных". Три правила нахождения первообразных Нахождение сложных первообразных

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любогох из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство. Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называютподынтегральным выражением , а f(x) подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

Геометрический смысл неопределенного интеграла. График первообразной Д(х) называют интегральной кривой. В системе координат х0у графики всех первообразных от данной функции представляют семейство кривых, зависящих от величины постоянной С и получаемых одна из другой путем параллельного сдвига вдоль оси 0у. Для примера, рассмотренного выше, имеем:

J 2 х^х = х2 + C.

Семейство первообразных (х + С) геометрически интерпретируется совокупностью парабол.

Если из семейства первообразных нужно найти одну, то задают дополнительные условия, позволяющие определить постоянную С. Обычно с этой целью задают начальные условия: при значении аргумента х = х0 функция имеет значение Д(х0) = у0.

Пример. Требуется найти ту из первообразных функции у = 2 х, которая принимает значение 3 при х0 = 1.

Искомая первообразная: Д(х) = х2 + 2.

Решение. ^2х^х = х2 + C; 12 + С = 3; С = 2.

2. Основные свойства неопределенного интеграла

1. Производная неопределенного интеграла равна подинтегральной функции:

2. Дифференциал неопределенного интеграла равен подинтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме самой этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной, который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

3. Метод интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции (или выражения) и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием . При сведении данного интеграла к табличному часто используются следующие преобразования дифференциала (операция «подведения под знак дифференциала »):

Вообще, f’(u)du = d(f(u)). эта (формула очень часто используется при вычислении интегралов.

Найти интеграл

Решение. Воспользуемся свойствами интегралаи приведем данный интеграл к нескольким табличным.

4. Интегрирование методом подстановки.

Суть метода заключается в том, что мы вводим новую переменную, выражаем подынтегральную функцию через эту переменную, в результате приходим к табличному (или более простому) виду интеграла.

Очень часто метод подстановки выручает при интегрировании тригонометрических функций и функций с радикалами.

Пример.

Найти неопределенный интеграл .

Решение.

Введем новую переменную . Выразимх через z :

Выполняем подстановку полученных выражений в исходный интеграл:

Из таблицы первообразных имеем .

Осталось вернуться к исходной переменной х :

Ответ:

Мы убедились в том, что производная имеет многочисленные применения: производная - это скорость движения (или, обобщая, скорость протекания любого процесса); производная - это угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; производная помогает решать задачи на оптимизацию.

Но в реальной жизни приходится решать и обратные задачи: например, наряду с задачей об отыскании скорости по известному закону движения встречается и задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой u = tg. Найти закон движения.

Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = u"(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна tg. Нетрудно догадаться, что

Сразу заметим, что пример решен верно, но неполно. Мы получили, что На самом деле, задача имеет бесконечно много решений: любая функция вида произвольная константа, может служить законом движения, поскольку


Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например, при t=0. Если, скажем, s(0) = s 0 , то из равенства получаем s(0) = 0+С, т.е.S 0 = С. Теперь закон движения определен однозначно:
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения: например, возведение в квадрат (х 2) и извлечение квадратного корня синус(sinх) и арксинус (аrcsin х) и т.д. Процесс отыскания производной по заданной функции называют дифференцированием, а обратную операцию, т.е. процесс отыскания функции по заданной производной - интегрированием.
Сам термин «производная» можно обосновать «по-житейски»: функция у - f(х) «производит на свет» новую функцию у"= f"(x) Функция у = f(х) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у"=f"(х), первичный образ, или, короче, первообразная.

Определение 1. Функцию у = F(х) называют первообразной для функции у = f(х) на заданном промежутке X, если для всех х из X выполняется равенство F"(х)=f(х).

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры:

1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для всех х справедливо равенство (х 2)" =2х.
2) функция у - х 3 является первообразной для функции у-Зх 2 , поскольку для всех х справедливо равенство (х 3)" = Зх 2 .
3) Функция у-sinх является первообразной для функции у=соsх, поскольку для всех х справедливо равенство (sinх)" =соsх.
4) Функция являетя первообразной для функции на промежутке поскольку для всех х > 0 справедливо равенство
Вообще, зная формулы для отыскания производных, нетрудно составить таблицу формул для отыскания первообразных.


Надеемся, вы поняли, как составлена эта таблица: производная функции, которая записана во втором столбце, равна той функции, которая записана в соответствующей строке первого столбца (проверьте, не поленитесь, это очень полезно). Например, для функции у = х 5 первообразной, как вы установите, служит функция (см. четвертую строку таблицы).

Замечания: 1. Ниже мы докажем теорему о том, что если у = F(х) - первообразная для функции у = f(х), то у функции у = f(х)бесконечно много первообразных и все они имеют вид у = F(х) + С. Поэтому правильней было бы во втором столбце таблицы всюду добавить слагаемое С, где С - произвольное действительное число.
2. Ради краткости иногда вместо фразы «функция у = F(х) является первообразной для функции y = f(x)», говорят F(х) - первообразная для f(x)».

2. Правила отыскания первообразных

При отыскании первообразных, как и при отыскании производных, используются не только формулы (они указаны в таблице на с. 196), но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило отыскания первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Обращаем ваше внимание на некоторую «легковесность» этой формулировки. На самом деле следовало бы сформулировать теорему: если функции у = f(х) и у=g{х) имеют на промежутке X первообразные, соответственно у-F(х) и у-G(х), то и сумма функций у = f(х)+g(х) имеет на промежутке X первообразную, причем этой первообразной является функция у = F(х)+G(х). Но обычно, формулируя правила (а не теоремы), оставляют только ключевые слова - так удобнее для применения правила на практике

Пример 2. Найти первообразную для функции у = 2х + соз х.

Решение. Первообразной для 2х служит х"; первообразной для созх служит sin х. Значит, первообразной для функции у=2х + соз х будет служить функция у = х 2 + sin х (и вообще любая функция вида У = х 1 + sinх + С).
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило отыскания первообразных.

Правило 2. Постоянный множитель можно вынести за знак первообразной.

Пример 3.

Ре ш е н и е. а) Первообразной для sin х служит -соз х; значит, для функции у = 5 sin х первообразной будет функция у = -5соз х.

б) Первообразной для соз x служит sin x; значит, для функции первообразной будет функция
в) Первообразной для х 3 служит первообразной для х служит первообразной для функции у = 1 служит функция у = х. Используя первое и второе правила отыскания первообразных, получим, что первообразной для функции у = 12х 3 + 8х-1 служит функция
Замечание. Как известно, производная произведения не равна произведению производных (правило дифференцирования произведения более сложное) и производная частного не равна частному от производных. Поэтому нет и правил для отыскания первообразной от произведения или первообразной от частного двух функций. Будьте внимательны!
Получим еще одно правило отыскания первообразных. Мы знаем, что производная функции у = f(кх+m) вычисляется по формуле

Это правило порождает соответствующее правило отыскания первообразных.
Правило 3. Если у = F(х) - первообразная для функции у = f(х), то первообразной для функции у=f(кх+m) служит функция

В самом деле,


Это и означает, что является первообразной для функции у = f(кх+m).
Смысл третьего правила заключается в следующем. Если вы знаете, что первообразной для функции у = f(х) является функция у = F(х),а.вам нужно найти первообразную функции у = f(кх+m), то действуйте так: берите ту же самую функцию F, но вместо аргумента х подставьте выражение кх+m; кроме того, не забудьте перед знаком функции записать «поправочный множитель»
Пример 4. Найти первообразные для заданных функций:

Решение , а) Первообразной для sin х служит -соз х; значит, для функции у = sin2х первообразной будет функция
б) Первообразной для соз х служит sin х; значит, для функции первообразной будет функция

в) Первообразной для х 7 служит значит, для функции у=(4-5х) 7 первообразной будет функция

3. Неопределенный интеграл

Выше мы уже отмечали, что задача отыскания первообразной для заданной функции у = f(х)имеет не одно решение. Обсудим этот вопрос более детально.

Доказательство. 1. Пусть у = F(х) - первообразная для функции у = f(х) на промежутке X. Это значит, что для всех х из X выполняется равенство x"(х) = f(х). Найдем производную любой функции вида у = F(х)+С:
(F(х) +С) = F"(х) +С = f(x) +0 = f(x).

Итак, (F(х)+С) = f(х). Это значит, что у = F(х) +С является первообразной для функции у = f(х).
Таким образом, мы доказали, что если у функции у = f(х) есть первообразная у=F(х), то у функции {f = f(x) бесконечно много первообразных, например, любая функция вида у = F(х)+С является первообразной.
2. Докажем теперь, что указанным видом функций исчерпывается все множество первообразных.

Пусть у=F 1 (х) и у=F(х) - две первообразные для функции У = f(x)на промежутке X. Это значит, что для всех х из промежутка X выполняются соотношения: F^ (х) = f(х); F"(х) = f(х).

Рaсмотрим функцию у = F 1 (х) -.F(х) и найдем ее производную: (F, (х) -F(х))" = F[(х)-F(х) = f(х) - f(х) = 0.
Известно, что если производная функции на промежутке X тождественно равна нулю, то функция постоянна на промежутке X (см. теорему 3 из § 35). Значит, F 1 (х)-F(х) =С, т.е. Fх) = F(х)+С.

Теорема доказана.

Пример 5. Задан закон изменения скорости от времени v = -5sin2t. Найти закон движения s = s(t), если известно, что в момент времени t=0 координата точки равнялась числу 1,5 (т.е. s(t) = 1,5).

Решение. Так как скорость - производная координаты как функции от времени, то нам прежде всего нужно найти первообразную от скорости, т.е. первообразную для функции v = -5sin2t. Одной из таких первообразных является функция , а множество всех первообразных имеет вид:

Чтобы найти конкретное значение постоянной С, воспользуемся начальными условиями, согласно которым, s(0) = 1,5. Подставив в формулу (1) значения t=0, S = 1,5, получим:

Подставив найденное значение С в формулу (1), получим интересующий нас закон движения:

Определение 2. Если функция у = f(х) имеет на промежутке X первообразную у = F(х), то множество всех первообразных, т.е. множество функций вида у = F(х) + С, называют неопределенным интегралом от функции у = f(x) и обозначают:

(читают: «неопределенный интеграл эф от икс дэ икс»).
В следующем параграфе мы выясним, в чем состоит скрытый смысл указанного обозначения.
Опираясь на имеющуюся в этом параграфе таблицу первообразных, составим таблицу основных неопределенных интегралов:

Опираясь на приведенные выше три правила отыскания первообразных, мы можем сформулировать соответствующие правила интегрирования.

Правило 1. Интеграл от суммы функций равен сумме интегралов этих функций:

Правило 2. Постоянный множитель можно вынести за знак интеграла:

Правило 3. Если

Пример 6. Найти неопределенные интегралы:

Решение , а) Воспользовавшись первым и вторым правилами интегрирования, получим:


Теперь воспользуемся 3-й и 4-й формулами интегрирования:

В итоге получаем:

б) Воспользовавшись третьим правилом интегрирования и формулой 8, получим:


в) Для непосредственного нахождения заданного интеграла у нас нет ни соответствующей формулы, ни соответствующего правила. В подобных случаях иногда помогают предварительно выполненные тождественные преобразования выражения, содержащегося под знаком интеграла.

Воспользуемся тригонометрической формулой понижения степени:

Тогда последовательно находим:

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

На этой странице вы найдёте:

1. Собственно, таблицу первообразных — её можно скачать в формате PDF и распечатать;

2. Видео, посвящённое тому, как этой таблицей пользоваться;

3. Кучу примеров вычисления первообразной из различных учебников и контрольных работ.

В самом видео мы разберём множество задач, где требуется посчитать первообразные функций, зачастую довольно сложных, но главное — не являющихся степенными. Все функции, сведённые в таблицу, предложенную выше, необходимо знать наизусть, подобно производным. Без них невозможно дальнейшее изучение интегралов и их применение для решения практических задач.

Сегодня мы продолжаем заниматься первообразными и переходим у чуть более сложной теме. Если в прошлый раз мы рассматривали первообразные только от степенных функций и чуть более сложных конструкций, то сегодня мы разберем тригонометрию и многое другое.

Как я говорил на прошлом занятии, первообразные в отличие от производных, никогда не решаются «напролом» с помощью каких-либо стандартных правил. Более того, плохая новость состоит в том, что в отличие от производной, первообразная вообще может не считаться. Если мы напишем совершенно случайную функцию и попытаемся найти ее производную, то это с очень большой вероятностью у нас получится, а вот первообразная практически никогда в этом случае не посчитается. Но есть и хорошая новость: существует довольно обширный класс функций, называемых элементарными, первообразные от которых очень легко считаются. А все прочие более сложные конструкции, которые дают на всевозможных контрольных, самостоятельных и экзаменах, на самом деле, составляются из этих элементарных функций путем сложения, вычитания и других несложных действий. Первообразные таких функций давно посчитаны и сведены в специальные таблицы. Именно с такими функциями и таблицами мы будем сегодня работать.

Но начнем мы, как всегда, с повторения: вспомним, что такое первообразная, почему их бесконечно много и как определить их общий вид. Для этого я подобрал две простенькие задачки.

Решение легких примеров

Пример № 1

Сразу заметим, что $\frac{\text{ }\!\!\pi\!\!\text{ }}{6}$ и вообще наличие $\text{ }\!\!\pi\!\!\text{ }$ сразу намекает нам, что искомая первообразная функции связана с тригонометрией. И, действительно, если мы посмотрим в таблицу, то обнаружим, что $\frac{1}{1+{{x}^{2}}}$ — не что иное как $\text{arctg}x$. Так и запишем:

Для того чтобы найти, необходимо записать следующее:

\[\frac{\pi }{6}=\text{arctg}\sqrt{3}+C\]

\[\frac{\text{ }\!\!\pi\!\!\text{ }}{6}=\frac{\text{ }\!\!\pi\!\!\text{ }}{3}+C\]

Пример № 2

Здесь также речь идет о тригонометрических функциях. Если мы посмотрим в таблицу, то, действительно, так и получится:

Нам нужно среди всего множества первообразных найти ту, которая проходит через указанную точку:

\[\text{ }\!\!\pi\!\!\text{ }=\arcsin \frac{1}{2}+C\]

\[\text{ }\!\!\pi\!\!\text{ }=\frac{\text{ }\!\!\pi\!\!\text{ }}{6}+C\]

Давайте окончательно запишем:

Вот так все просто. Единственная проблема состоит в том, для того чтобы считать первообразные простых функций, нужно выучить таблицу первообразных. Однако после изучения таблицы производных для вас, я думаю, это не будет проблемой.

Решение задач, содержащих показательную функцию

Для начала запишем такие формулы:

\[{{e}^{x}}\to {{e}^{x}}\]

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}\]

Давайте посмотрим, как это все работает на практике.

Пример № 1

Если мы посмотрим на содержимое скобок, то заметим, что в таблице первообразных нет такого выражения, чтобы ${{e}^{x}}$ стояло в квадрате, поэтому этот квадрат необходимо раскрыть. Для этого воспользуемся формулами сокращенного умножения:

Давайте найдем первообразную для каждого из слагаемых:

\[{{e}^{2x}}={{\left({{e}^{2}} \right)}^{x}}\to \frac{{{\left({{e}^{2}} \right)}^{x}}}{\ln {{e}^{2}}}=\frac{{{e}^{2x}}}{2}\]

\[{{e}^{-2x}}={{\left({{e}^{-2}} \right)}^{x}}\to \frac{{{\left({{e}^{-2}} \right)}^{x}}}{\ln {{e}^{-2}}}=\frac{1}{-2{{e}^{2x}}}\]

А теперь соберем все слагаемые в единое выражение и получим общую первообразную:

Пример № 2

На этот раз степень уже побольше, поэтому формула сокращенного умножения будет довольно сложной. Итак раскроем скобки:

Теперь от этой конструкции попробуем взять первообразную от нашей формулы:

Как видите, в первообразных показательной функции нет ничего сложного и сверхъестественного. Все один считаются через таблицы, однако внимательные ученики наверняка заметят, что первообразная ${{e}^{2x}}$ намного ближе просто к ${{e}^{x}}$ нежели к ${{a}^{x}}$. Так, может быть, существует какой-то более специальное правило, позволяющее, зная первообразную ${{e}^{x}}$, найти ${{e}^{2x}}$? Да, такое правило существует. И, более того, оно является неотъемлемой частью работы с таблицей первообразных. Его мы сейчас разберем на примере тех же самых выражений, с которыми мы только что работали.

Правила работы с таблицей первообразных

Еще раз выпишем нашу функцию:

В предыдущем случае мы использовали для решения следующую формулу:

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\operatorname{lna}}\]

Но сейчас поступим несколько иначе: вспомним, на каком сновании ${{e}^{x}}\to {{e}^{x}}$. Как уже и говорил, потому что производная ${{e}^{x}}$ — это не что иное как ${{e}^{x}}$, поэтому ее первообразная будет равна тому же самому ${{e}^{x}}$. Но проблема в том, что у нас ${{e}^{2x}}$ и ${{e}^{-2x}}$. Сейчас попытаемся найти производную ${{e}^{2x}}$:

\[{{\left({{e}^{2x}} \right)}^{\prime }}={{e}^{2x}}\cdot {{\left(2x \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

Давайте еще раз перепишем нашу конструкцию:

\[{{\left({{e}^{2x}} \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

\[{{e}^{2x}}={{\left(\frac{{{e}^{2x}}}{2} \right)}^{\prime }}\]

А это значит, что при нахождении первообразной ${{e}^{2x}}$ мы получим следующее:

\[{{e}^{2x}}\to \frac{{{e}^{2x}}}{2}\]

Как видите, мы получили тот же результат, что и ранее, однако не воспользовались формулой для нахождения ${{a}^{x}}$. Сейчас это может показаться глупостью: зачем усложнять вычисления, когда есть стандартная формула? Однако в чуть более сложных выражениях вы убедитесь, что этот прием очень эффективен, т.е. использование производных для нахождения первообразных.

Давайте в качестве разминки аналогичным способом найдем первообразную от ${{e}^{2x}}$:

\[{{\left({{e}^{-2x}} \right)}^{\prime }}={{e}^{-2x}}\cdot \left(-2 \right)\]

\[{{e}^{-2x}}={{\left(\frac{{{e}^{-2x}}}{-2} \right)}^{\prime }}\]

При вычислении наша конструкция запишется следующим образом:

\[{{e}^{-2x}}\to -\frac{{{e}^{-2x}}}{2}\]

\[{{e}^{-2x}}\to -\frac{1}{2\cdot {{e}^{2x}}}\]

Мы получили точно тот же результат, но пошли при этом по другому пути. Именно этот путь, который сейчас кажется нам чуть более сложным, в дальнейшем окажется более эффективным для вычисления более сложных первообразных и использование таблиц.

Обратите внимание! Это очень важный момент: первообразные как и производные можно посчитать множеством различных способов. Однако если все вычисления и выкладки будут равны, то ответ получится одним и тем же. Мы убедились в этом только что на примере ${{e}^{-2x}}$ — с одной стороны мы посчитали эту первообразную «напролом», воспользовавшись определением и посчитав ее с помощью преобразований, с другой стороны, мы вспомнили, что ${{e}^{-2x}}$ может быть представлено как ${{\left({{e}^{-2}} \right)}^{x}}$ и уже потом воспользовались первообразной для функции ${{a}^{x}}$. Тем не менее, после всех преобразований результат получился одним и тем же, как и предполагалось.

А теперь, когда мы все это поняли, пора перейти к чему-то более существенному. Сейчас мы разберем две простенькие конструкций, однако прием, который будет заложен при их решении, является более мощным и полезным инструментом, нежели простое «беганье» между соседними первообразными из таблицы.

Решение задач: находим первообразную функции

Пример № 1

Давайте сумму, которая стоит в числители, разложи на три отдельных дроби:

Это довольно естественный и понятный переход — у большинства учеников проблем с ним не возникает. Перепишем наше выражение следующим образом:

А теперь вспомним такую формулу:

В нашем случае мы получим следующее:

Чтобы избавиться от всех этих трехэтажных дробей, предлагаю поступить следующим образом:

Пример № 2

В отличие от предыдущей дроби в знаменателе стоит не произведение, а сумма. В этом случае мы уже не можем разделить нашу дробь на сумму нескольких простых дробей, а нужно каким-то образом постараться сделать так, чтобы в числителе стояло примерно такое же выражение как в знаменателе. В данном случае сделать это довольно просто:

Такая запись, которая на языке математики называется «добавление нуля», позволит нам вновь разделить дробь на два кусочка:

Теперь найдем то, что искали:

Вот и все вычисления. Несмотря на кажущуюся большую сложность, чем в предыдущей задаче, объем вычислений получился даже меньшим.

Нюансы решения

И вот в этом кроется основная сложность работы с табличными первообразными, особенно это заметно на второй задаче. Дело в том, что для того чтобы выделить какие-то элементы, которые легко считаются через таблицу, нам нужно знать, что конкретно мы ищем, и именно в поиске этих элементов и состоит все вычисление первообразных.

Другими словами, недостаточно просто зазубрить таблицу первообразных — нужно уметь видеть что-то, чего пока еще нет, но что подразумевал автор и составитель этой задачи. Именно поэтому многие математики, учителя и профессора постоянно спорят: «А что такое взятие первообразных или интегрирование — это просто инструмент либо это настоящее искусство?» На самом деле, лично на мой взгляд, интегрирование — это никакое не искусство — в нем нет ничего возвышенного, это просто практика и еще раз практика. И чтобы попрактиковаться, давайте решим еще три более серьезных примера.

Тренируемся в интегрировании на практике

Задача № 1

Запишем такие формулы:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

\[\frac{1}{x}\to \ln x\]

\[\frac{1}{1+{{x}^{2}}}\to \text{arctg}x\]

Давайте запишем следующее:

Задача № 2

Перепишем следующим образом:

Итого первообразная будет равна:

Задача № 3

Сложность этой задачи состоит в том, что в отличие от предыдущих функций сверху вообще отсутствует какая-либо переменная $x$, т.е. нам непонятно, что добавлять, вычитать, чтобы получить хоть что-то похожее на то, что стоит снизу. Однако, на самом деле, это выражение считается даже проще, чем любое выражение из предыдущих конструкций, потому что данную функцию можно переписать следующим образом:

Возможно, вы сейчас спросите: а почему эти функции равны? Давайте проверим:

Еще перепишем:

Немного преобразуем наше выражение:

И когда я все это объясняю своим ученикам, практически всегда возникает одна и та же проблема: с первой функцией все более-менее понятно, со второй тоже при везении или практике можно разобраться, но каким альтернативным сознанием нужно обладать, чтобы решить третий пример? На самом деле, не пугайтесь. Тот прием, который мы использовали при вычислении последней первообразной, называется «разложение функции на простейшие», и это очень серьезный прием, и ему будет посвящен отдельный видеоурок.

А пока предлагаю вернуться к тому, что мы только что изучили, а именно, к показательным функциям и несколько усложнить задачи с их содержанием.

Более сложные задачи на решение первообразных показательных функций

Задача № 1

Заметим следующее:

\[{{2}^{x}}\cdot {{5}^{x}}={{\left(2\cdot 5 \right)}^{x}}={{10}^{x}}\]

Чтобы найти первообразной этого выражения, достаточно просто воспользоваться стандартной формулой — ${{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}$.

В нашем случае первообразная будет такая:

Разумеется, на фоне той конструкции, которую мы решали только что, эта выглядит более простой.

Задача № 2

Опять же, несложно заметить, что эту функцию несложно разделить на два отдельных слагаемых — две отдельных дроби. Перепишем:

Осталось найти первообразную от каждого от этих слагаемых по вышеописанной формуле:

Несмотря на кажущуюся большую сложность показательных функций по сравнению со степенными, общий объем вычислений и выкладок получился гораздо проще.

Конечно, для знающих учеников то, что мы только что разобрали (особенно на фоне того, что мы разобрали до этого), может показаться элементарными выражениями. Однако выбирая именно две эти задачи для сегодняшнего видеоурока, я не ставил себе цель рассказать вам еще один сложный и навороченный прием — все, что я хотел вам показать, так это то, что не стоит бояться использовать стандартные приемы алгебры для преобразования исходных функций.

Использование «секретного» приема

В заключение хотелось бы разобрать еще один интересный прием, который, с одной стороны выходит за рамки того, что мы сегодня в основном разбирали, но, с другой стороны, он, во-первых, отнюдь не сложный, т.е. его могут освоить даже начинающие ученики, а, во-вторых, он довольно часто встречается на всевозможных контрольных и самостоятельных работах, т.е. знание его будет очень полезно в дополнение к знанию таблицы первообразных.

Задача № 1

Очевидно, что перед нами что-то очень похожее на степенную функцию. Как нам поступить в этом случае? Давайте задумаемся: $x-5$ отличается от $x$ не так уж и сильно — просто добавили $-5$. Запишем так:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{\left(\frac{{{x}^{5}}}{5} \right)}^{\prime }}=\frac{5\cdot {{x}^{4}}}{5}={{x}^{4}}\]

Давайте попробуем найти производную от ${{\left(x-5 \right)}^{5}}$:

\[{{\left({{\left(x-5 \right)}^{5}} \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\cdot {{\left(x-5 \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\]

Отсюда следует:

\[{{\left(x-5 \right)}^{4}}={{\left(\frac{{{\left(x-5 \right)}^{5}}}{5} \right)}^{\prime }}\]

В таблице нет такого значения, поэтому мы сейчас сами вывели эту формулу, используя стандартную формулу первообразной для степенной функции. Давайте так и запишем ответ:

Задача № 2

Многим ученикам, которые посмотрят на первое решение, может показаться, что все очень просто: достаточно заменить в степенной функции $x$ на линейное выражение, и все станет на свои места. К сожалению, все не так просто, и сейчас мы в этом убедимся.

По аналогии с первым выражением запишем следующее:

\[{{x}^{9}}\to \frac{{{x}^{10}}}{10}\]

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=10\cdot {{\left(4-3x \right)}^{9}}\cdot {{\left(4-3x \right)}^{\prime }}=\]

\[=10\cdot {{\left(4-3x \right)}^{9}}\cdot \left(-3 \right)=-30\cdot {{\left(4-3x \right)}^{9}}\]

Возвращаясь к нашей производной, мы можем записать:

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=-30\cdot {{\left(4-3x \right)}^{9}}\]

\[{{\left(4-3x \right)}^{9}}={{\left(\frac{{{\left(4-3x \right)}^{10}}}{-30} \right)}^{\prime }}\]

Отсюда сразу следует:

Нюансы решения

Обратите внимание: если в прошлый раз по сути ничего не поменялось, то во втором случае вместо $-10$ появилось $-30$. На что отличается $-10$ и $-30$? Очевидно, что на множитель $-3$. Вопрос: откуда он взялся? Присмотревшись можно увидеть, что она взялась в результате вычислений производной сложной функции — тот коэффициент, который стоял при $x$, появляется в первообразной внизу. Это очень важное правило, которое я изначально вообще не планировал разбирать в сегодняшнем видеоуроке, но без него изложение табличных первообразных было бы неполным.

Итак, давайте еще раз. Пусть есть наша основная степенная функция:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

А теперь вместо $x$ давайте подставим выражение $kx+b$. Что тогда произойдет? Нам нужно найти следующее:

\[{{\left(kx+b \right)}^{n}}\to \frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k}\]

На каком основании мы это утверждаем? Очень просто. Давайте найдем производную написанной выше конструкции:

\[{{\left(\frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k} \right)}^{\prime }}=\frac{1}{\left(n+1 \right)\cdot k}\cdot \left(n+1 \right)\cdot {{\left(kx+b \right)}^{n}}\cdot k={{\left(kx+b \right)}^{n}}\]

Это то самое выражение, которое изначально и было. Таким образом, эта формула тоже верна, и ею можно дополнить таблицу первообразных, а лучше просто запомнить всю таблицу.

Выводы из «секретного: приема:

  • Обе функции, которые мы только что рассмотрели, на самом деле, могут быть сведены к первообразным, указанным в таблице, путем раскрытия степеней, но если с четвертой степенью мы еще более-менее как-то справимся, то вот девятую степень я бы вообще не рискнул раскрывать.
  • Если бы мы раскрыли степени, то мы бы получили такой объем вычислений, что простая задача заняла бы у нас неадекватно большое количество времени.
  • Именно поэтому такие задачи, внутри которых стоят линейные выражения, не нужно решать «напролом». Как только вы встречаете первообразную, которая отличается от той, что в таблице, лишь наличием выражения $kx+b$ внутри, сразу вспоминайте написанную выше формулу, подставляйте ее в вашу табличную первообразную, и все у вас получится намного быстрее и проще.

Естественно, в силу сложности и серьезности этого приема мы еще неоднократно вернемся к его рассмотрению в будущих видеоуроках, но на сегодня у меня все. Надеюсь, этот урок действительно поможет тем ученикам, которые хотят разобраться в первообразных и в интегрировании.

Для каждого математического действия существует обратное ему действие. Для действия дифференцирования (нахождения производных функций) тоже существует обратное действие — интегрирование. Посредством интегрирования находят (восстанавливают) функцию по заданной ее производной или дифференциалу. Найденную функцию называют первообразной .

Определение. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка справедливо равенство: F′(x)=f (x) .

Примеры. Найти первообразные для функций: 1) f (x)=2x; 2) f (x)=3cos3x.

1) Так как (х²)′=2х, то, по определению, функция F (x)=x² будет являться первообразной для функции f (x)=2x.

2) (sin3x)′=3cos3x. Если обозначить f (x)=3cos3x и F (x)=sin3x, то, по определению первообразной, имеем: F′(x)=f (x), и, значит, F (x)=sin3x является первообразной для f (x)=3cos3x.

Заметим, что и (sin3x+5 )′=3cos3x , и (sin3x-8,2 )′=3cos3x , ... в общем виде можно записать: (sin3x)′=3cos3x , где С — некоторая постоянная величина. Эти примеры говорят о неоднозначности действия интегрирования, в отличие от действия дифференцирования, когда у любой дифференцируемой функции существует единственная производная.

Определение. Если функция F (x) является первообразной для функции f (x) на некотором промежутке, то множество всех первообразных этой функции имеет вид:

F (x)+C , где С — любое действительное число.

Совокупность всех первообразных F (x)+C функции f (x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается символом (знак интеграла). Записывают: ∫f (x) dx=F (x)+C .

Выражение ∫f (x) dx читают: «интеграл эф от икс по дэ икс».

f (x) dx — подынтегральное выражение,

f (x) — подынтегральная функция,

х — переменная интегрирования.

F (x) — первообразная для функции f (x) ,

С — некоторая постоянная величина.

Теперь рассмотренные примеры можно записать так:

1) 2хdx=x²+C. 2) ∫ 3cos3xdx=sin3x+C.

Что же означает знак d?

d — знак дифференциала — имеет двойное назначение: во-первых, этот знак отделяет подынтегральную функцию от переменной интегрирования; во-вторых, все, что стоит после этого знака диференцируется по умолчанию и умножается на подынтегральную функцию.

Примеры. Найти интегралы: 3) 2pxdx; 4) 2pxdp.

3) После значка дифференциала d стоит х х , а р

2хрdx=рх²+С. Сравните с примером 1).

Сделаем проверку. F′(x)=(px²+C)′=p·(x²)′+C′=p·2x=2px=f (x).

4) После значка дифференциала d стоит р . Значит, переменная интегрирования р , а множитель х следует считать некоторой постоянной величиной.

2хрdр=р²х+С. Сравните с примерами 1) и 3).

Сделаем проверку. F′(p)=(p²x+C)′=x·(p²)′+C′=x·2p=2px=f (p).